
INTERNATIONAL JOURNAL OF MICROSIMULATION (2009) 2(1) 16-31

The Life-Cycle Income Analysis Model (LIAM): A Study of a

Flexible Dynamic Microsimulation Modelling Computing

Framework

Cathal O’Donoghue , John Lennon and Stephen Hynes
Rural Economy Research Centre (RERC), Teagasc, Ireland; email: Cathal.ODonoghue@teagasc.ie

ABSTRACT: This paper describes a flexible computing framework designed to create a dynamic
microsimulation model, the Life-cycle Income Analysis Model (LIAM). The principle computing

characteristics include the degree of modularisation, parameterisation, generalisation and robustness.
The paper describes the decisions taken with regard to type of dynamic model used. The LIAM framework
has been used to create a number of different microsimulation models, including an Irish dynamic cohort
model, a spatial dynamic microsimulation model for Ireland, an indirect tax and consumption model for
EU15 as part of EUROMOD and a prototype EU dynamic population microsimulation model for 5 EU
countries. Particular consideration is given to issues of parameterisation, alignment and computational
efficiency.

Keywords: flexible; modular; dynamic; alignment; parameterisation; computational efficiency

1. INTRODUCTION

Population-based dynamic microsimulation models
are programs that are used to forecast
populations into the future and to assess the
impact of economic and demographic change on
public policy. In particular these models have
been used to analyse existing policy and to design
policy reforms in inter-temporal policies such as

education, pensions, long-term care and spatial
policy.

The objective of this dynamic modelling
framework is to incorporate a time dimension into
policy analysis. Using models based on cross-
section data simply allows one to look at the effect

of policy at one point in time. Using cross-
sectional data one is limited in the simulation of
policy instruments which depend on inter-
temporal factors such as pensions. A dynamic
microsimulation life cycle model allows one to
examine policy over time; for example life course

redistribution, forecasts of cross-sectional
redistribution and the simulation of pensions.

Designing dynamic microsimulation models is a
large model building project involving many
disciplines such as economics, social policy,
statistics and computer science. This paper

describes an innovative mechanism for making
dynamic microsimulation models easier to
construct, using a generalised method. The result
is the Life-cycle Income Analysis Model (LIAM). In

addition we outline a number of current
applications of LIAM to further illustrate the
flexibility of the approach adopted.

The paper is designed as follows. Section 2
describes the objectives of the paper, with section
3 describing the main model features. Section 4
overviews the different types of process modules,
while section 5 discusses alignment. Section 6

discusses some efficiency features. Section 7
describes some of the implementations of LIAM
and section 8 concludes.

2. OBJECTIVES

The construction of a dynamic model is a very
large task, both in terms of grasping the types
and forms of behaviour that take place over a
lifetime and the effort in programming thousands
of lines of code.
When DMMs were first developed, they
represented advances in computer science as well

as in social science methodology. However,
despite dynamic microsimulation models (DMM)
having existed since the 1970s (Orcutt et al.,
1986), developments in the field of
microsimulation have progressed only slowly
(O‟Donoghue, 2001a). Part of the reason has been
the computational resource requirements. In

many countries data limitations have also
significantly limited developments.

Fortunately, in recent years, both difficulties have
started to be overcome. Computers have
increased in speed, now allowing very powerful

models to be constructed on Personal Computers.
At the same time the establishment of household
panel datasets in many countries, for example the
European Community Household Panel Survey,
the British Household Panel Survey and the
German Socio-Economic Panel, allied to the
increasing availability of administrative datasets,

removed the barrier to the estimation of dynamic
behavioural processes.

Even so, the spread of the DMM technology and

the development of the field has been relatively
slow. The models that are being used at present
are not doing very much more than the DYNASIM

model in the late 1970‟s. A large potential reason
is the apparent benefit to cost ratio. Many
institutions, when faced with the large cost of
developing a dynamic model, feel the money
better spent on other techniques.
One significant contributor to the cost of

development is the cost in producing the
computing environment of the model. In addition,
because the computing necessary to produce a

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 17

dynamic microsimulation model is so complicated,

computing development has often taken
precedence over developing better behavioural

equations. It is therefore important to focus on
ways of reducing the cost of building this initial
framework.

O‟Donoghue (2001a) surveys the dynamic
microsimulation models that have been
constructed, describing in particular the design
choices that have been faced. While most models
have been built as stand-alone efforts, a number
of attempts have been made to avoid the start-up
costs and learning curve in building the model by

utilising the same framework for alternative
applications. There were some efforts in the 1970s
to write generic microsimulation computer
software packages. However because of the
complexity of the systems to be simulated, users
typically found that they had specialist

requirements that these software packages could

not cater for. (See, for example, Leombruni and
Richiardi, 2005.)

Although not designed with objective of
constructing multiple dynamic microsimulation
models, the code from CORSIM model (Caldwell,

1996) has been stripped down and used as a
template in the construction of the Canadian
DYNACAN, Swedish SVERIGE and the US Social
Security Administration models. Subsequently
there have been four examples of programs that
have been written explicitly for multiple dynamic
microsimulation model construction: ModGen

(Wolfson and Rowe, 1998), UMDBS (Sauerbier,
2002), GENESIS (Edwards, 2004) and LIAM – the
focus of this paper.

MODGEN is a computer language designed to
create microsimulation models, and has been used
to create a number of microsimulation models

(dynamic and static) within the Canadian
government, such as Lifepaths. UMDBS is a
simulation system developed at Darmstadt
University as part of academic research. It is
implemented in the object oriented language
Smalltalk and its main applications are socio-

economic investigations. GENESIS is a SAS based
modelling framework being used within the UK
Department of Work and Pensions to create the
Pensim2 pension age dynamic microsimulation
model and the state pension forecasting model.
LIAM, unlike MODGEN, is a closed model, in which
spouses are drawn from individuals within the

model population. In addition, LIAM is fully

accessible to researchers, whereas GENESIS is
currently available for internal government use
only.

In this paper we describe the LIAM framework
which was developed, ironically, because of the

limited resources available to the author. Dynamic
models have typically been constructed by
governmental institutions (MOSART, SESIM,
DYNACAN, PENSIM2) or by major research grants
(SVERIGE, DYNASIM, POPSIM), although a
number of models have been constructed as part

of PhDs (Harding, Baldini). Not being funded by a

major research grant or by a government
institution LIAM falls into the latter “low budget”

category, being developed initially as part of a
PhD and latterly expanded with small research
grants and with the assistance of a number of PhD
students. As a result, it is freely acknowledged

that current implementations of LIAM are
relatively basic compared to the existing
proprietary models listed above. But these
shortcomings can be overcome, subject to
improved data and funding availability. The
advantages already offered by LIAM lie in its
flexibility and modularity, and its objective of

providing an unconstrained model development
platform, adaptable to future uses and future
proofed to allow for future enhancements.

The initial application of LIAM was a single cohort
life-course analysis of the redistributive impact of

the Irish Tax-Benefit system, using relatively

unsophisticated data and behavioural equations.
Subsequent developments (described in more
detail below) include improved data (2-8 years in
the panel data underlying the behavioural
estimations), the addition of a graphical user
interface, the move to a multi-cohort population

model, and the use for alternative policy analyses
such as spatial, indirect taxation and international
comparisons. Future developments that are
planned include improving the behavioural
equations to respond to changes in the policy
environment such as labour supply retirement and
migration.

In order to avoid in-built software limitations
inhibiting future model developments, careful
thought is necessary in the design of a flexible

modelling framework. There are a number of
features that are desirable in such a framework:
 In order to deal with new datasets with ease,

using different sets of variables should not be
a problem.

 It should be easy to incorporate new
behavioural information.

 Ability to run on a personal computer using
standard “inexpensive” software.

 It should be straightforward to make changes
in the model model using the framework, even
if the model has not been used for a period of
time, or is being used by multiple analysts.
This implies transparency in the operation of
the framework and also flexibility in the way in
which behaviour can be incorporated in the

model

 A framework that is robust to the modelling
changes desired.

 Computational efficiency as, despite
computing time decreasing with the
availability of cheaper and faster computers,
computational demand has increased at a

faster rate.
 A modelling environment that allow the user

to focus more on the estimation of behavioural
equations rather than on computing issues.

 Ability to take account of, and examine, the
feedback effects of policy reforms.

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 18

3. FRAMEWORK FEATURES

In this section we describe the main aspects of

LIAM, focusing initially on the general structure of
the framework and then elaborating the data
structure and issues relating to modularisation
and parameterisation.

Structure of Framework
A dynamic microsimulation model takes individual
objects (individuals, households, farms,
companies) and simulates the probabilities of
various events occurring at various points in time.
Dynamic events may of course occur at the same

point in time as other events.

Figure 1 describes the main operations of the
ageing component of the LIAM dynamic
microsimulation model. In this context „ageing‟ is
a generic term covering any dynamic event that

involves updating object characteristics over time.

Here the operation of one particular ageing
module at one point in time is examined. In reality
this process occurs on a number of occasions as
all the individuals in the database pass through a
number of ageing modules at each point in time.

Data for each person are firstly taken from the
database, having been transformed into the model
data-structure, which is described in more detail
below. The individual is then passed through each
ageing module in turn. The ageing modules to be
used are specified as part of a parameter list,
which allows the order and the types of the

transition processes to be varied. Input

parameters for each ageing module are stored in

Microsoft EXCEL spreadsheets and are accessible
via the user front end. Output from each ageing

module is stored, in memory, in alignment storage
matrices. For example, alignment regressions
produce a deterministic component XB to which is
added a stochastic component, . These are stored

in a dynamic data structure and ranked with the
highest Z percent of values taken from the
exogenous totals in the alignment process. If the
ageing module is a transition between states, then
the output will be a probability, otherwise if the
ageing module is a transition between continuous
amounts, for example incomes, the output is a

real variable. When all individuals have been
passed through the particular ageing module,
alignment occurs (see section 5 below for a
description). This ensures that aggregates from
the micro model match macro aggregates. Finally
if a variable for any individual changes then this

change is registered in the database (i.e. in both

the physical relational database, stored on the
hard disk in ASCII and the virtual database stored
in random access memory). In what follows the
operations of each of these components of the
ageing module are unpacked in more detail.

Data and Framework Data Structure
In this section we describe how data is handled in
LIAM. We describe the database used and how
data are stored within the framework. The data
structure or format of the data is very important
as it determines to a large extent the amount of
memory required to store the data, which in turn

influences the speed at which the model can run.

Figure 1 Description of a Dynamic Module

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 19

It also has important consequences for the

flexibility of the model.

Turning first to data storage, input output data are
stored in ASCII format. When storing output,
variables are converted from real to integer as
integers require less storage space than real

numbers. This is achieved by multiplying output
values by 100 and truncating the result to zero
decimal places. For storage we also adopt a
relational database structure due to organisation
and memory handling advantages.

Figure 2 describes the data-structure used by

LIAM. Structurally the data is stored in a hierarchy
of object types (tobjt) such as person, household
or firm. Each of these object types themselves
consists of a number of objects (tobj) such as the
actual incidence of a person or household. Events
(tvar1) such as births, tenure status or

identification number then occur to objects. Each

event can have a number of incidences or values
(tval). Within this data-structure persons are
considered one set of objects and households
another, with the IDs of the member individuals of
a household stored as events that can happen to
households. This is because persons can be

members of a number of different households
over time, breaking down the traditional nesting
of persons with households associated with cross-
sectional data structures.

We exploit the hierarchical nature of relational
databases making data storage event driven.

Storing model output as consecutive cross-

sections would result in severe inefficiencies, as
each variable would be stored for each output

period, so for example a person‟s gender would be
stored for each point in time. Making data storage
event driven, new data is stored only when a new
event occurs and thus the data changes. Gender is

therefore only stored at birth. One can make
significant savings in memory as a result. Each
individual variable, however, requires more
information than is the case in a cross-sectional
data structure. For each event it is necessary to
know what event occurred (tvar1), when it
occurred (tval.evtime), and the value of the event

(tval.amount).

There are a number of ways in which data can be
stored within LIAM itself during the simulation. If
the model were open, as in the case of the
DEMOGEN or LifePaths models in Canada, where

new spouses are generated synthetically when

needed, then all of each individual's transitions
could be simulated independently of other
individuals. Thus each individual could be read
from the database, their life course simulated and
then stored in the database one at a time. LIAM,
however, uses a closed model. Except for new

births or immigrants, no new individuals are
generated. Marriages, for example, link individuals
already in the database. This method is more
straightforward to interpret as it mirrors what
happens in the real world. As a result of this
closed approach, individual behaviour can become
dependent on the characteristics and behaviour of

Figure 2 Model data structure

Notes: See text for explanation of object and event types

tobjt

tobj *obj

tobjt *next_ptr

tobj

tvar1 *st_var

tobj *next_ptr

tobj

tvar1 *st_var

tobj *next_ptr

tobj

tvar1 *st_var

tobj *next_ptr

tvar1

tval *st_val

tvar1 *next_ptr

tvar1

tval *st_val

tvar1 *next_ptr

tval

int evtime

double amount,

 tval *next_ptr

tvar1

tval *st_val

tvar1 *next_ptr

tvar1

tval *st_val

tvar1 *next_ptr

tval

int evtime

double amount,

 tval *next_ptr

tval

int evtime

double amount,

 tval *next_ptr

tval

int evtime

double amount,

 tval *next_ptr

tval

int evtime

double amount,

 tval *next_ptr

tvar1

tval *st_val

tvar1 *next_ptr

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 20

other members of the sample. For example,

alignment to required global totals means that the
chance of employment for an individual is not

independent of the rest of the population, but
depends upon the aggregate outcomes of the
whole labour market. Other operations in the
model that may depend on other individuals

include the marriage market and other processes
which depend on spousal information and
alignment routines.

Although the model is not solely individual based
(it is a multilevel model comprising Regions,
Counties, Districts, Households and Persons), a

side effect of the inter-person dependency
engendered by the closed model approach is that
it is necessary to store all individuals in memory
during the simulation. To this end, therefore,
during a model run the virtual database stored in
memory during the operation of the program

mimics the structure of the relational database

stored on the hard disk. Once the data have been
read from the database into memory, LIAM runs
through each object type (person, family and so
on), in turn simulating the life course events
desired for each object of that type. Simulation
processes are therefore object-type specific

Typically variables which are components of the
household data structure are declared in long lists
within a dynamic model. They may be initialised
elsewhere and have other operations carried out
in other parts of the program. As the modelling
framework is so large and complicated, it rapidly

becomes difficult to keep track of all the places in
LIAM which need to be altered when a new
variable is included. As a result, instead of
declaring variables within LIAM, we declare the list

of variables to be used separately in a parameter
sheet (dyvardesc) .LIAM then creates space for
the variable, initialises the data and carries out all

necessary transformations and operations
automatically. This minimises the number of
model alterations necessary when a new variable
is introduced, keeping the framework entirely
flexible with regard to the set of variables used
whilst maintaining its robustness. For example, if

the user wishes to introduce a new instrument
with an output variable such as health status,
then the user simply needs to introduce the
variable into the parameter sheet and LIAM will do
the rest, without the user having to recode the
framework itself. Another advantage of the
flexible declaration of variables is that, because

variables are stored in vectors, new composite

variables can be produced easily. For example, a
complex variable like disposable income, if not
simulated directly, can be generated from the
vector of its components such as employment
income and capital income.

Another important advantage of the hierarchical
method of data storage is the ease with which
duration information can be accessed. As the date
and value of each event is stored it is possible to
determine such information as duration, duration
in the last 12 months, date an event first

occurred, date an event ended, duration in a

particular state and so on. Information of this kind
is frequently required by tax-benefit systems and

other policy analysis. Additionally it is easy to
access earlier values of an event such as previous
earnings.

Population versus Cohort
The initial database depends on the purpose of the
simulation. One of the key distinctions in the
literature is between longitudinal or single cohort
models and population or cross-section/multi-
cohort models. However, this distinction is now
largely redundant due to advances in computing

power. From a computing perspective, a cohort
can simply be seen as an initial sample of
unrelated individuals aged 0, while the population
contains a sample of individuals of different ages,
some of whom are related. As a result, the
computing framework has been developed to

handle both types of analysis. Running LIAM as a

dynamic population model requires that the initial
cross-section is stored in the required manner,
while running the model as a dynamic cohort
model requires the model to first generate an
initial cohort.

Modularisation
The use of modularisation is an important
technique that helps achieve the objectives of
flexibility, transparency and robustness that LIAM
requires. Modularisation means that components
within the LIAM are designed to be as autonomous
as possible. Modules are the components where

calculations take place, each with its own
parameters, variable definitions and self-contained
structure, with fixed inputs and outputs. The
result is a set of independent components that do

not interact with each other directly, allowing the
framework to operate as a collection of
independent building blocks. Because each

process module is entirely self contained, each can
be run independently, left out or replaced by an
alternative module. Constructing a program in this
way allows for the model to be easily expanded to
deal with new behavioural equations or functions.
Also, because it allows the user to focus on

individual components one at a time, without
interaction with the rest of the program, the
robustness of the model can be improved.

Linkages
Many policy instruments depend upon multiple
units of analysis. So, for example, pensions may

depend upon individual characteristics such as

contribution histories, age and so on, taxation
may depend upon family characteristics such as
both spouses‟ incomes, and social protection
instruments and welfare measures upon the
household unit. Similarly sociological analyses and
long-term care analysis may depend upon wider

kinship networks. These linkages are not strictly
hierarchical (e.g. region, household, family,
individual). The may, in fact, consist of a web of
linkages (region, firm, household, family,
individual, mother, father, partner, children and so
on). This multi-level structure with its complex

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 21

interactions between levels is one of the main

complications of microsimulation models that
make it difficult to use person-based modelling

frameworks. While it is not infeasible to simulate
using non-hierarchical linkages such as those
between relatives across households using other
software packages such as social simulation and

statistical packages, the non-hierarchical structure
often requires one to be "creative" in designing
the model due to inflexibilities in the model as
they are often non-standard requirements. In
contrast purpose designed microsimulation
packages such as LIAM can have these data
structures in-built, improving the transparency

and flexibility of the modelling environment.

In the LIAM framework, the mechanism of linking
objects has been automated as a relational
database. Potentially any object can be linked to
an object of either the same or a different object

type. For example individuals of object type

person (p) will be linked to their household of
object type (h), while in turn the household is
linked with the individuals in the household.
Therefore calculation of the number of persons in
a household is a process carried out at the
household level. This new household level

variable, npers, can be accessed by individual
processes using the prefix h_npers. (The actual
prefix used is user-defined.) In similar fashion
linkages can be made between objects of the
same type. For example a child can be linked to
parent‟s information, accessing mother‟s
education level using m_edlevel and father‟s using

f_edlevel.

In the initial framework, there are no predefined
linkages as the objects can be of any type defined

by the user. The user pre-defines all linkages
using the parameterisation described below to
essentially create a web of linkages between

objects; essentially defining keys to link tables. As
long as the nature of the linkage is defined, it is
then possible at any level of the model to access
information from another level. This is quite a
powerful feature of the data-structure, saving
both time and memory. In the absence of these

linkages, such as h_npers, a new process would
have to be simulated which would store this
number of persons in a household as a person
level variable p_hnpers (say), which is analogous
to a flat file, where household level variables are
stored at the person level. The use of linkages or
keys provides the space saving advantages of a

relational database and avoids the simulation of

an extra process to convert the household variable
to the person level.

Creating and Killing Objects
While creating a new object (person, family,
household, enterprise) is itself not a very

complicated task, creating space and assigning
initial default values, creating a new object to
mimic the birth of a new person is rather more
complicated. As a result we have had to develop a
specific as opposed to generic new_birth function.
The assignment of variable values such as single,

age zero, no education and so on is

straightforward. However it is also desirable that
the new child inherits the linkages of the parent.

So, for example, the partner (if any) of the
mother at birth becomes the child‟s father.
Similarly other children of the mother become
siblings and the hierarchical linkages such as the

household, family and region of the mother are
also inherited by the child.

Analogously, “killing” a person is also more
difficult that killing an object. The individual needs
to be extracted from the web of kinship networks
and other linkages of which they form part. For

example, the number of persons in a household
decreases by one, whilst the spouse becomes a
widow. At the same time bequest of accumulated
wealth may need to be transferred and, in the
case of pensions systems, contributions or
entitlements may need to be transferred to

surviving dependants. Again the possible

complexity of the operation is far too difficult to
generalise, so again object-specific routines have
been required.

Migration
Migration is another complex operation. From the

point of view of LIAM, emigration is analogous to
killing someone. The reason for this is that, in a
national model, we do not track individuals while
they are abroad. (Technically, as pension rights
can be accumulated overseas, one may need to
simulate their life-histories while overseas, but
this has been beyond the capacity of any existing

model.) A variation of the pageant algorithm
(Chénard, 2000) is used to ensure that the
migration of family units results in national
individual level aggregates being achieved.

Immigration, however, is a more difficult
situation. An immigrant differs from a new birth in

that they have an accumulated set of
characteristics and potentially are accompanied by
other family members. One solution is to simulate
the range of characteristics of new immigrants on
arrival. However the range of characteristics is
very broad and variable and so it would be very

difficult to retain the correct multi-dimensional
distribution of characteristics. To avoid this
problem we sample (with replacement) from a set
of immigrant households in the data. Thus
whenever we need an immigrant household we
simply select a “real” (data-dependent) family
with the actual characteristics of a new immigrant

family. In addition to preserving the multi-

dimensional distribution, it saves substantial
computing time compared to having to simulate
all of the relevant immigrant characteristics.

Parameterisation
In order that modules and other components of

LIAM can be changed with ease, it is necessary to
store model parameters externally. Therefore,
where possible, parameters are not hard coded
within the framework. Figure 3 details the set of
parameters used by the modelling framework. The
sets of parameters, representing the flow of

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 22

Figure 3 Parameter Sheet Hierarchy

Notes: See text for explanation of parameter types

control in the model, are in some sense
hierarchical.

At the top level we have dyrunset parameters

which contain the parameters necessary to run
the model, detailing directories (location of input
and output files), time period to be run and so on.
The remaining parameters deal with either the
data structure or the simulation process. Dashed

lines in Figure 3 indicate this division.

On the data side the highest level parameters are
contained in objtype. This file tells the model how
many object types there are (region, household,
person and so forth). LIAM creates each object
type based upon the list defined here and assigns
user-defined prefixes (for example, r,h and p).

The framework then looks for files objtype_x
containing the incidences of each of the object
types (r, h, p), which in turn contain the
identification numbers (IDs) of each object of that
particular object type. So objtype_p would contain
the IDs of all persons.

Related to the set of object types is a set of
variables associated with each type in the

dyvardesc file. In this file, all variables used in
LIAM are declared and described. (In the front
end, the parameter files have equivalent menus.)
It is, in essence a data dictionary, for the model.
This file contains information on the following

attributes of each variable:
 variable name
 variable type (binary, multi-category,

continuous)
 whether an income variable (monetary

amount that can be added to other monetary

amounts) – this prevents categorical data

being summed; for example, adding gender to
employment

 limits of the variable (upper and lower
bounds) for debugging and validation

 whether or not a categorical variables (if so
how many categories and the list of categories
– for tabulation purposes),

 whether or not needs to be updated during
the simulation to account for inflation

 default values to be taken by new persons
 data description (describes variable names)

Associated with each variable, there is a data
table containing information about the object(s)
associated with the variable (who), the time the
event occurred (when) and the value of the
variable (what).

While each data table within an object type is
linked by the key or object ID, we need further
information to link objects of the same or other
type. The linkage parameters define the set of
possible links between objects. The user needs to
define a name for the linkage (for example, ph –

person to household; hp – household to person)
and the equivalent origin and destination types (p

for link ph; h for link ph). These linkages between
objects are stored in the linkage file link_xy.
Subsequently, for each linkage listed in link_xy,
LIAM pairs the relevant origin objects and
destination objects (for example children to

parents) and stores the resulting origin and
destination IDs in a link-specific file (for example
pc for children and parents).

We now consider the set of parameters that define
the simulation processes. The highest level is the

agespine or process spine/list. In any simulation

 Parameters dealing with the data structure Parameters dealing with simulation process

objtype

transition

alignment

dyvardesc
polparam

dyrunset

agespine

DATA

linkage

link_xy

objtype_x

Model

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 23

there is an implicit ordering, and events are

triggered through conditions. The process spine
contains the list of modules to be run in the

dynamic model, so that by varying the order of
the modules and varying the content of the list,
one can vary the types of processes that can be
run in the model. This feature exploits the

modularisation inherent in LIAM, where because
each process is seen as a separate building block,
the number, type and order of processes can vary
without having to change the programme code.
Each process or module has a corresponding
parameter sheet in the parameter file
“Transitions”. These parameter files tell the model

the output variables of each process, the type of
process, whether a process needs to be aligned
and the actual process parameters themselves,
such as the transition rates, regression equation
and policy rules and so on. If a particular process
is to be aligned, then LIAM will look for an

appropriate set of alignment parameters.

Sometimes individual parameters may be required
to be changed between runs without any change
to the set of processes. A reform to a pension
simulation module where the replacement rate
was changed is an example. The polparam
parameter set contains information associated

with each parameter for each possible “system”,
where the system to be run is defined in the
dyrunset parameters.

4. PROCESS MODULES

This section describes the main process types that
can be used by LIAM. This refers to the collection
of operations that are simulated on objects during
a simulation. These include demographic

processes such as birth, marriage, having children
and death, education, labour market processes
such as employment and unemployment, the

simulation of incomes and interactions with the
tax-benefit system.

In order to aid flexibility, we classify processes
under a number of headings. In this way, instead
of programming each module separately, we only

need to program the module type once. In order
to run a module, we then only need a module
name (which is included in the process spine), a
module type to determine which program to run
and a set of parameters which is fixed for every
process type. At present there are 6 module
types:

 transition matrices, in the form of a log linear

model (trap)
 transformations (tran)
 regressions, both with continuous and limited

dependent variable (regr)
 macro alignment (discussed in section 5)

(macro)

 marriage market (mmkt)
 tax-benefit system (tb) (actually a collection

of modules; we have linked LIAM to the
EUROMOD EU15 tax-benefit model and to
other tax-benefit routines)

The first component of a parameter file contains

details about what conditions need to hold for the
process to be run. At each point (step) in time,

each individual is passed through the module. If
the conditions hold, then the module calculations
are carried out and the output passed to the
alignment component of the module. The output

for each individual is stored until all individuals
have passed through the module. The alignment
component then ensures that the aggregates
correspond with external control totals.

Transition Matrices
One of the most important processes in a dynamic

model is the transition between different discrete
states. Transition Matrices are often used to
perform these operations. They specify the
probability of an individual with particular
circumstances moving from state A to state B. In
this framework, transition matrices can be stored

as log-linear models (See, for example, Dobson,

1990). In this way transition rates are
decomposed into average and relative transition
rates. As a result extra-relative transition rates
can be added with ease. For example, if a
mortality rate on average fell by 0.1% every 10
years, then a time-dependent relative probability

parameter of 0.999 could be added. Similarly, this
approach allows the model builder to combine
information from different sources. So, for
example, we combine actual age-gender specific
mortality rates for 1991 taken from life-tables and
use relative mortality rates taken from Nolan
(1990) that incorporate socio-economic relative

mortality rates.

Regressions
The second type of transition process used is

based upon standard regression models. At
present, this type of module allows four types of
dependent variable

 standard continuous dependent variable
 log dependent variable, allowing for use of the

log normal distribution.
 logit discrete choice dependent variable
 probit discrete choice dependent variable

Any variable in the model can be used as a
dependent variable and any variable can be used
as an explanatory variable. The error term can
also vary. The default error term takes a normal
distribution with independent disturbances.
Following Pudney (1992), LIAM also allows for the
error term to be decomposed into individual

specific (un) random effects and general error

components (vnt). However, more complicated
error decompositions are also possible. This allows
some degree of heterogeneity to be assigned
specifically to individuals. So, for example, in
determining earnings the individual specific error
may represent some difference in innate ability,

while the general error term represents random
variation over time. Breaking up the variation in
this manner will tend to reduce within lifetime
variation and prevent to some degree the
existence of very unusual life paths.

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 24

In the LIAM modelling framework, transitions

occur at discrete time intervals because of the
weakness of the data and because of the desire to

be able to align the data. As Galler (1997) points
out, the statistical shortcomings associated with
the use of discrete time models make it is
desirable to use short term discrete time periods

such as a month. As the computing requirements
can be substantial for monthly simulations, LIAM
is sufficiently flexible to allow the user as the
ability to specify the time period to be used and so
monthly or annual periods can be simulated. For
a fuller review of the advantages and
disadvantages of continuous time versus discrete

time, see O‟Donoghue (2001a).

Transformations
While regression models and transition matrices
are stochastic processes, involving a random
component, some processes are deterministic.

Examples include age, which depends on the date

of birth, widowhood, which depends on the death
of a spouse and so on. Likewise if an individual
moves from year 6 in education to year 7, years
of education increase by 1.

Within the transformation-types handled by LIAM

there are two types of deterministic
transformation, gen and fgen. The gen functions
are of simpler types, utilising calculation routines
combining sets of variables using standard
operations ({+,-,*,/, max,min,^,(,)}). The fgen
set of functions represent ad-hoc programs. It is
where we exploit, for example, the relational

database structure of the data in operations such
as the number of persons in a household, where
the function counts the number of objects of type
person linked to the object household as defined

by the link_hp link file. Similarly it is where ad-hoc
functions such as new_birth and killperson are
defined. While gen functions and predefined fgen

functions are pre-coded and parameterised so that
new users can employ them, new fgen functions
such as the pension system of a new country need
to be programmed by the user if the existing
functionality does not allow it.

Marriage Market
If an individual is selected to marry or form a
partnership a process is needed to determine
which spouse they will take. The process used
here is to take the characteristics of the individual
chosen to marry and the characteristics of each
possible spouse and determine the likelihood of a

match. Similar to the method used in other

models such as the CORSIM model, this is done
using a logit model that estimates the probability
of marriage between pairs of individuals. The
parameter file therefore is identical to that used in
the regression process type. The module itself
forms a matrix of the characteristics of the n men

and n women selected to marry. It estimates a
probability for each pairing and assigns a match to
the couples with the highest probability of
marrying.

Bouffard et al. (2001) have identified some

problematical issues associated with the marriage

market, in particular with strange matches
occurring amongst the last people to be married in

a particular simulation. In order to avoid these
issues, we allow the user to create a super-set of
potential male partners, so that rather the last
female in the marriage pool being forced to select

an unlikely match, there remain a number of
males to choose from. In addition we employ the
Order of Decreasing Differences algorithm
proposed by Howard Redway at the UK
Department for Work and Pensions, which creates
a measure of the distance of an individual from
the centre of the population (or the average

characteristic of the population) and first selects
for matching the females with the most unusual
characteristics, who are likely to be the most
difficult to match. The logic is that those in the
centre of the data are “average people” who are
more likely to find a good match than someone at

the extremes.

Policy Processes
The fourth process type is the simulation of the
tax-benefit system. Re-emphasising the desire to
reuse code and, wherever possible to avoid
duplication, the dynamic framework has been

made flexible enough to link with other specialist
programs such as pre-existing tax-benefit models.
As a result tax-benefit routines from other
models, such as EUROMOD, can be seamlessly
accessed and thus used as module components of
the dynamic model.

Behavioural Response
A desirable feature often ignored in dynamic
microsimulation models is the ability to include
feedback loops so that behaviour can respond to

changes in public policy. A criticism made by Citro
and Hanushek (1997) is that dynamic models are
insufficiently flexible to incorporate the demands

of behavioural response. In order to be able to
simulate behaviour, typically the model needs to
be able to call a policy simulation routine a
number of times to quantify the financial impact of
alternative choices on the decision in questions
such as the choice to work or retire. As a result

the software framework has been designed to be
able to incorporate feedback loops. The degree of
modularisation that exists in the framework allows
any number or order of modules to be run and for
modules to be able to be run a number of times.

For example, in O‟Donoghue (2001b) we

implemented a simple labour supply model where

labour supply depended on the tax-benefit
system. In order to have labour supply depend on
tax-benefit policy, the tax-benefit system needed
to be run once as an input into the labour supply
module and again, after labour supply has been
determined, in order recalculate taxes and

benefits in the light of the resulting behavioural
decision. In O‟Donoghue (2001b) the model used
the tax-benefit system as an input into decisions
to work, decisions to seek part-time employment
versus full-time employment and to become self-
employed. The tax-benefit system therefore

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 25

needed to be run 5 times to examine the impact

of the system on the choice faced by an individual.
In the case of spouses, whose behaviour can be

inter-dependent, the tax-benefit system needed to
be simulated 17 times (4 decisions for each
spouse, plus one run on the basis of resulting joint
behaviour). As a result incorporating behavioural

response, although possible, can be
computationally expensive.

Other possible behavioural routines that could be
included are retirement decisions, consumption
and benefit take-up. Although computationally
expensive, the framework is sufficiently flexible

should the user require and the computing power
becomes available.

Robustness
Finally, in order to avoid robustness problems due
to modules being incorrectly specified, the model

contains a debug device which ensures that all

inputs required by a module are actually available
(i.e. have either been generated in the model or
read from the database) before each module can
be run.

5. ALIGNMENT

The section describes the alignment function
contained in LIAM. The objective of alignment is to
ensure that output aggregates match external
control totals. The reason this is done is that
micro behaviour (both social and economic) is

extremely complex and, micro-theory being
limited, the full variability of the system (in this
case the life paths of individuals) cannot be
accurately predicted. In addition, a household

model only makes forecasts about a small part of
the economy and largely ignores interactions with
the rest of the world economy. Finally, data taken

from relatively short periods of time may not fully
reflect dynamics over time. For all of the reasons
dynamic micro-models may not be able forecast
aggregate characteristics of the population well.

Discrete choice models

In discrete choice models the output for each
individual is a probability. In order to use these
models for predictive purposes, a decision rule is
necessary. In other words, what forecasted
probability (or higher) will produce an event. In
order to predict a state with a logit (or probit)
model, one draws a random number uniformly

distributed number ui . When

)(logit-1 ii Xu

or

)(p -1
ii Xrobitu ,

then a state is predicted to occur.

Another use of alignment is in correcting for
predictive failures of econometric models. For

example, when using discrete choice models such

as logit or probit models, the predictive power is
often poor. Duncan and Weeks (2000:292)

highlight that “even in functionally well-specified
models, the predictive performance is poor,
particularly where some states are relatively
densely or sparsely represented in the data”.

Greene (1997:894) attributes this to the fact that
“the maximum likelihood estimator is not chosen
to maximise a fitting criterion based on prediction
of y, as it is in the classical regression (which
maximises R2). It is chosen to maximise the joint
density of the observed dependent variable.” Thus
the further the probability of an event occurring is

from 0.5, the less effective these decision rules
are at producing the desired result. As a result
models may under or over predict the number of
events. So, for example, if 5% of individuals of
individuals should have the event, then the logit
model may not necessarily produce 5% of events.

Alignment, however, will constrain the event to

occur to 5% of individuals. This is effectively a
calibration mechanism and will produce the
correct proportion of events. Of course, care must
be in its use as alignment may lead to the
disguising of errors in model specification.

The types of control totals that can be used to
align to include:
 The aggregate proportion/number in a state or

moving between states
 The average event value
 The distribution of values
 The average growth rate in the value of an

event

In this paper we shall deal specifically only with
the first type

A simple analogy for the relationship between
alignment and the process modules is that the

process modules, such as logit models, produce a
ranking variable, while the alignment mechanism
selects the number of transitions. For example, in
our econometric model we may have an equation
of the probability of dying as described in equation
(1), that depends on age, gender and whether an

individual is disabled or not. Assuming that
disabled people have a higher mortality rate, then
given the same age and gender and distribution,
the mortality distribution for disabled people will
be higher:

iiii

iii

AgeDisabledGender

AgeDisabledp

43

21)logit(
 (1)

The deterministic component of the model will
result in those with a higher risk having a better
chance of the event occurring, while the stochastic
part (i) will ensure that there is some variability
(so that not only those with high risk are

selected). This model therefore produces the
person-specific risk of dying.

In order to select the number of people that die,
we use the alignment probabilities. Firstly
individuals are grouped into the appropriate age

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 26

and gender groups. As everyone in the relevant

group will have the same age and gender, they
only differ by the deterministic component for

disabled people, ß1 x Disabledi + ß4 x Disabledi x
Agei, and the stochastic component i. The object
then is to select to die the people in the group
with the highest probabilities of dying. If ß1 is

positive, proportionally more disabled will die than
non-disabled. As a result we see that the output of
the model equation is used to rank the individuals
to whom the event occurs, but to leave the
decision of experiences the event to the alignment
process.

Implementation
In this section we describe a practical method for
ranking individuals for alignment. We take as our
reference point a logistic model:

)(logit-1 iii Xp (2)

Utilising the model

ii Xp)*(logit

will result in those with the highest risk always
being selected for the event. Continuing our
example above, the disabled, all other things
being equal, would be selected to have a die. In
reality those with the highest risk will on average
be selected more than those with lower risk,

rather than simply selected those with the highest
risk. As a result some variability needs to be
introduced.

Models based on the CORSIM framework such as
the DYNACAN model (Chénard, 2000) utilise the

following method. Firstly, predicted probability is
produced using our econometric model:

)(-1
ii Xlogitp* .

Next, a random number, ui, is drawn from a
uniform distribution, and subtracted from the

predicted probability, p*
i, to produce a ranking

variable, ri = p*
i – ui. This value is then used to

rank individuals so that the top x% of values are
selected.

A concern about this method is that the range of
possible ranking values is not the same for each
point. In other words, because the random
number ui [0,1] is subtracted from the

deterministically predicted p*
i, then the ranking

value takes the range ri [-1,1]. However the

ranking value for each individual will only take a
possible range ri [ui–1, ui]. So, for example, if

p*
i is small, say = 0.1, the range of possible

ranking values is [-0.9, 0.1]. At the other extreme
if p*

i is large, say = 0.9, then the range of
possible ranking values is [-0.1, 0.9]. Thus
because there is only a small over lap for these
extreme points, even if a very low random
variable is selected, then an individual with a

small p*
i will have a very low chance of being

selected.

Ideally the range of possible ranking values should
be the same, so that for each individual, ri [a,b],

with individuals with a low p*
i being clustered

towards the bottom and those with a high p*
i

being clustered towards the top.

We now consider an alternative method. This
method takes a predicted logistic variable:

ii Xp)(logit .

Next, a random number is drawn taken from the
logistic distribution. This is added to the
prediction, giving

iip)(logit .

The resulting inverse logit,

)(logit-1 iii Xp

is then used to rank individuals and similarly the
top x% of households are selected.

The rank produced by the two methods is not the

same. The second method will be more likely to
select cases at extreme points than the first, while
first method will select more points with central
values of p*

i.

Macro Alignment
There are a number of levels at which alignment
can occur. At the lowest level, alignment refers to
the decision rule used in a discrete choice model.
The next level, described above in our mortality

example, which is called the meso-level, concerns
the idea that the aggregates for particular groups
(in this case gender and age) should match
desired external totals. Meso-level alignment and
the use of alignment as a decision rule can
however be combined into one stage.

Sometimes the desired targets are narrower than
the alignment targets we use. Extending our
mortality alignment example, suppose we align
mortality by age, gender and occupation. We wish
to include occupation in the alignment as
occupational structure is very important for other
characteristics in the model, and because there

are known to be significant differentials in
occupational mortality rates. However if one of the
core targets in the model is to achieve the
mortality distribution supplied by external sources
such as official population projections, which may
be disaggregated only by age and gender, then

our meso-alignment may produce different
aggregates. This will happen if our underlying
occupation distribution is different to the one
implicit in the official forecasts. It may therefore

be desirable to adjust the results again to achieve
these targets. This process is known as macro
alignment. Another example follows on from the

meso-alignment in the simulation of transitions
between employment states. Macro alignment is
then used to constrain total employment rates.
See Appendix 1 for the steps involved in the
macro alignment process.

Behavioural Change

Handling behavioural interactions in the model
resulting from alternative scenarios is another
issue one needs to consider when deciding on an

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 27

alignment strategy.

One potential solution is to compare the average

(pre-alignment) event value, such as the average
transition rate or average earnings in the baseline
scenario, with the average in the alternative
scenario. One potential method is to increase

alignment values by proportional difference. This
is a method utilised in some dynamic models.
However, this approach assumes that all
processes are unconstrained. In some cases, such
as mortality rates, this may be a realistic
assumption. One may expect that an exogenous
increase in human capital will reduce total

mortality rates. In this case shifting down the
alignment totals is appropriate.

Other processes face market or other institutional
constraints, issues that are only partially
simulated in the model. One example involves the

labour market, where there is a behavioural

change in labour participation in response to a tax
change. If labour supply increases, then wages
would fall and employment increase. This is
similar to shifting the alignment probabilities.
However one would have to shift earnings as well.
Unfortunately, due to rigidities in the labour

market, this may not necessarily happen. Labour
demand may be fixed, in which case we may just
simply see that as more women supply labour,
they simply replace people in the labour market
who are less “employable”. This is similar to not
shifting alignment at all. In cases where there are
market interactions such as this, it may be useful

to incorporate a model of the market that would
inform the response of alignment totals to
economic and demographic totals. At present the
framework makes no explicit incorporation of

behavioural change in the alignment structure.
Future work on macro-micro linkages will attempt
to address this.

6. EFFICIENCY

In initial versions of the LIAM framework,
developments focused on functionality and not

speed. So for each process the model passed
through all the objects of the object type, checked
to see if a condition was true and, if true,
performed the calculation f(Xß+i) before, if
necessary, using alignment to produce the
predicted value of the process. In this section we
describe a number of improvements in

computational efficiency, relative to this initial

approach, that have been made recently.

A first efficiency saving relies on the fact that
most processes are relatively stable and so do not
change much year on year. Because of this,
eligibility conditions are unlikely to change much

year on year. For example, for lone parent births
the model used to check to see if an object was
female, single and of child bearing age. It did this
for each year and for every person. This is
inefficient as gender doesn‟t change, so there is
no need to repeatedly check whether a male can

have a child. Similarly marital status eligibility

does not need to be retested annually, given that
marital status changes only infrequently. In the

same way, the age range condition (child bearing
age) only changes twice over a lifetime. A key
speed improvement, therefore, has been to
calculate the conditions for all people in the first

year of the simulation and then only to recalculate
the condition if an input variable to the condition
changed.

The same is true when calculating regressions.
Most regressions are of the form

)(
,

ii
ji

jij AfXf

Again, by calculating the value of the expression

in the first year, when Xij changes to Xij* one only
needs to apply the following transformation

)(*
ijjij ij

XXAf .

The same speed efficiencies can be found for
transformations, alignment and tabulations. For
example, when aligning by age-group, sex and

education level, or creating output tables by these
components, most of these categories do not
change much if at all during the simulation. It is
therefore computationally quite expensive to
identify, say, all 20-30 year old males with
university education each period of the simulation

to perform an alignment. Rather, by computing
the group membership at the outset and only
changing group membership when a characteristic
changes, we significantly reduce the
computational costs.

These improvements were applied by creating a

data structure that links every variable to the
processes which utilise the variable. When the
value of the variable changes, then the related
conditions, regressions, transformations etc are
updated.

The move from periodic simulations to

initialisation plus simulation only when inputs
change transfers some of the computing cost from
the simulation period to the start. Initialisation
becomes a good deal longer as, rather than
simulating equations where conditions are met
(for example, only simulating work equations for

those who are in-work the previous period), we
must now simulate all equations (i.e. simulate the
equations conditional on working and conditional

on not working in the previous period). On the
other hand, as all that is being calculated is

ji
jijX

,

,

no alignment needs to occur at this stage. The
net result is much less looping through the data
and significant overall economies of scale.

As development of the program occurred

incrementally and different versions have been
run on different machines and with different
specifications, it has been quite difficult to gauge

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 28

the impact of the speed improvements. However a

conservative estimate is that the run time is 10%
of what it was and potentially as low as 5%. So

the qualitative conclusion is that the gains are
highly significant.

Another, although less significant, speed

improvement was obtained by storing variables in
a static rather than in a dynamic data structure
(i.e. as an array rather than a list). As the set of
variables does not vary within a run of the model,
there is no gain to using a dynamic list; instead a
speed penalty is imposed as the list needs to be
traversed to find a particular variable as opposed

to simply using the array index to identify the
variable.

While attention was paid in the original data-
structure to the memory efficiency of the data-
structure by storing only new events, little

attention was paid to the space taken within this

structure, which proved very costly. For example
all incidences of values were stored as doubles or
real numbers, even though the majority of
variables were binary variables that could be
stored as a char. To improve this we introduced a
new category in the data dictionary which

specified what type of variable to be used, so that
binary variables only took up a fraction of the
space required to store a double. Also we stored
real and categorical numbers as integers. Real
numbers were converted to integers by
multiplying by 1000 and retaining only the integer
element of the number. Integers take half as

much space as a double. We also conducted an
audit of the entire data-structure, stripping out as
much superfluous memory requirements as
possible. This has been particularly important for

allowing for much bigger datasets to be simulated
on a laptop with limited RAM.

Something we have not explored yet is the further
speed improvement that could be found by
creating sub-sets of objects associated with each
condition. At present, the model needs to scroll
down through the whole dataset for each process.
If conditions are updated dynamically, then the

sub-groups where the condition is true can be
updated dynamically, resulting in calculations only
taking place on the subset. When the condition
changes then, this updates the set of objects
where the condition is true. Therefore in doing
simulations, the model will only simulate over the
set of objects eligible to be simulated.

At present all processes are run in series. In other
words each process is completely simulated before
moving on to the next process. This requires a
data pass for each process. This is necessary for
processes that are aligned as the decision about
who makes a transition will depend upon all

objects and not on individual objects. However
some processes, such as transformations and
unaligned processes, do not need to be done
serially. Efficiencies could be gained by simulating
these processes in parallel. For example, if age is
simulated for an individual, then age squared and

age band could be calculated using age as input

for each individual before continuing on to the
next individual, cutting the number of data passes

and improving the speed of the model. Other
examples include the calculation of durations and
lagged values of variables.

As always in microsimulation models, there is a
trade-off between flexibility, complexity and
performance. Parameterisation may sometimes
result in enhanced complexity and thus reduced
transparency and ease of use of the model. In the
LIAM structure, this has been less of an issue as
the parameterisation allows for the same code to

be reused over and over without recoding, so to
some extent improving the transparency. There
are, however, some performance overheads noted
elsewhere in the paper, where the degree of
parameterisation and generalisation may increase
the number of operations required and thus

increase the time to run a simulation. This

increase must be weighed up against the
complexity of creating a dynamic model without
an existing framework.

7. IMPLEMENTATIONS OF THE FRAMEWORK

In this section we describe a number of
implementations of the LIAM framework. Thus far
there have been four implementations of the
model
a. Life-cycle redistribution in the Irish Tax-

Benefit system - Irish Dynamic Cohort

Microsimulation Model
b. Redistributive impact of Indirect Taxes in

Europe – dynamic microsimulation of
expenditures in the EUROMOD framework.

c. Spatial Policy Analyses – Simulation Model of
the Irish Local Economy (SMILE)

d. Cross-national comparisons of the

distributional impact of pensions and the
incentive to retire – multi-country dynamic
microsimulation model – EU 6th Framework
project, Old Age Income Maintenance Policies
(AIM).

Model (a) was the basis of the author‟s PhD and
has been used to examine the life-course
redistributive impact of the Irish Tax-Benefit
System (O‟Donoghue, 2002) and the redistributive
impact of pension reform (O‟Donoghue, 2005).
The implementation was a single cohort model
taking 1000 people aged 0 and simulating their

entire life-history before linking with the

EUROMOD tax-benefit model to simulate the tax-
benefit system. A feedback loop was used to
incorporate the impact of tax-benefit policy on
labour supply decisions.

While model (a) utilised an external tax-benefit

microsimulation model to provide tax-benefit
simulations for use in the dynamic
microsimulation model, model (b) takes inputs
from the dynamic microsimulation framework into
a static tax-benefit model. As part of the EU tax-
benefit model EUROMOD, there was a desire to

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 29

examine the impact of indirect taxation on

redistribution (O‟Donoghue et al., 2004).
However, most of the databases used as inputs

into the model did not contain expenditure
information. The LIAM framework was used to
simulate a system of equations simulating total
expenditure and budget shares of twenty groups

of goods on the basis of information contained in
the income surveys used in the model. Indirect
taxes were then simulated using the EUROMOD
framework. This model used datasets of up to
50,000 households simulating indirect taxes for
one fiscal year.

In recent years parallel microsimulation modelling
has been used for geographical and spatial
analysis (See Clarke, 1996 and Holm et al, 1996).
Since 2002, a team comprising the University of
Leeds, the National University of Ireland Galway
and Teagasc have been developing model (c), the

Simulation Model of the Irish Local Economy

(SMILE), using the LIAM framework with the
principle objective of carrying out spatial analysis
in Ireland (O‟Donoghue et al., 2005). Examples
include modelling the impact of local area
demographic changes on welfare, modelling the
spatial impact of rural policy reforms, identifying

agri-tourism hotspots. A future goal is to model
the spatial behavioural impact of public
infrastructure developments such as road building
programs. The first component of the model is
developed outside the framework, requiring the
statistical matching of individual tabular local area
census information with micro-level household

data to produce the base dataset. This is done
using a statistical matching algorithm. The LIAM
framework is used to simulate typical dynamic
microsimulation variables such as demographic

and labour market variables. Particular
advancements from this model include regional
labour markets, micro-farm level production

functions and spatial behavioural models. The
model is currently under development. At present
it is split into around 30 county models of about
70,000 persons each and simulates spatial-based
policy at the local level.

The fourth implementation of LIAM, also in
development, is being used to carry out cross-
national comparisons of the distributional impact
of pensions in a selection of countries in the EU
(Belgium, Germany, Ireland, Italy and Sweden).
In addition a comparative analysis will be carried
using a semi-structural retirement decision

module based upon discounted income and

pension wealth streams. This model simulates
over the 50 year horizon 2000-2050, using cross-
sections of about 10-15,000 individuals.

8. CONCLUSIONS

While there have been substantial numbers of
papers describing analyses carried out by models
developed using LIAM, relatively little has been
written on the technical development of the
models. In this paper we have discussed some of

the methodological innovations underpinning the

LIAM dynamic microsimulation framework.

The key feature of LIAM is the extensive use of
parameterisation. Parameterisation of the main
features of the dynamic model allows for the
programme code which runs transitions,

alignment and transformations to be reused for
different purposes. When adding new variables to
the model, alterations need to be made only in
one place, in a parameter file, making the model
easier to change and reducing the possibility of
error. This aids model flexibility, as code does not
need to be reprogrammed when parameters

change. This in turn improves the durability of
models developed using LIAM, as it allows new
parameters to be included when better
information becomes available. This is perhaps the
most important feature of the LIAM, allowing the
framework to be used to develop model

applications for a wide variety of purposes. It also

allows for ease of expansion as improved data and
micro-behaviour become available. In addition, by
defining the data structure outside the model, in a
parameter file, model transparency and
robustness is improved.

A second key feature of LIAM is modularisation.
Six generic module types have been identified and
developed, which between them are designed to
cover the full range of model functionality required
in a dynamic microsimulation model. Because
these modules are fully parameterised, in LIAM
one can declare a new module by simply taking an

existing module as a template and changing the
parameters as required. Similarly, because
module run-order and type is parameterised, the
model can handle any number of modules in any

order without the need for extra programming,
provided the functionality of the new module
maps onto one of the existing generic module

types. New modules can be added to a model
without affecting its integrity as, in LIAM, all
modules are designed to work independently of
each other. This further adds to the robustness of
the model. Also, by allowing the user to focus on
small sections of code at time, modularisation

improves the transparency of the model.

The third aspect of LIAM highlighted in this paper
is its handling of alignment. As well reviewing the
rationale for alignment, we have set out the
circumstances in which the use of generic or event
specific functions are most appropriate for the

implementation of alignment. We have also set

out in detail the process required to align
aggregate outcomes to the proportion or number
of objects in, or moving between, given states,
including consideration of hierarchical
(meso/macro) alignment.

The final aspect of LIAM highlighted in this paper
is the range of efficiency improvements, in both
speed and memory usage, that have been
implemented as a result of lessons learnt whilst
developing the framework. The main improvement
has been move from the evaluation of functions

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 30

on a universal, periodic, basis, to an initial

universal evaluation followed by reevaluation only
for those objects to whom the function applies,

and for whom values in relevant elements of their
attribute set have changed. Secondary
improvements have been linked to more efficient
data storage, including the conversion of all data,

including floating point data, to integer format.

We do not claim that LIAM is either the fastest or
most efficient dynamic microsimulation model
currently in use. But unfortunately the
methodological underpinnings of many models
remain undocumented or are set out only in in-

house documentation. In this paper we have
attempted to publicly document some of the
issues that have arisen in the creation of the LIAM
framework, with the hope that other model
builders can learn from our experiences. Although
the framework is not an attempt at writing a

microsimulation programming language, it has

allowed for a variety of different applications to be
constructed without the need for extensive
recoding. In addition, as we have shown, it has
been possible to use this framework as a template
for other dynamic models, because the model
itself is entirely independent of data and

behavioural equations to be used. To promote
collaboration and further development, LIAM is
available to researchers on request.

Acknowledgements
The authors gratefully acknowledges financial
assistance from the Postgraduate Fellowship of

the Economic and Social Research Institute,
Dublin, the Irish Department of Agriculture Rural
Stimulus Fund, Center for Research on Pensions
and Welfare Policies (CERP), University of Turin,

the NUIG Millennium fund, the Combat Poverty
Research Fund and the Targeted Socio-Economic
Research programme of the European Commission

(CT97-3060), the AIM project financed under the
6th Framework Research Program of the European
Commission and the IDARI project financed under
the 5th Framework Research Program of the
European Commission. We are very grateful for
the assistance of Donal Kelly, who substantially

improved the code of this model. We are also
grateful for comments provided by Geert Bryon,
Jane Falkingham and seminar participants in LSE,
Nordic Microsimulation Workshop Copenhagen,
AIM workshop Madrid and colleagues in Teagasc,
the DWP and NUIG. The authors remain
responsible for all remaining errors.

REFERENCES

Bouffard N, Easther R, Johnson T Morrison R J and

Vink J (2001) „Matchmaker, matchmaker,
make me a match‟, Brazilian Electronic Journal
of Economics, 4(2).

Caldwell S B (1996) „Health, wealth, pensions and
life paths: the CORSIM dynamic
microsimulation model‟, in Harding A (Ed.)
Microsimulation and Public Policy, Amsterdam:
Elsevier, 505-522.

Chénard D (2000) „Individual alignment and group

processing: an application to migration
processes in DYNACAN‟, in Mitton L, H

Sutherland and M Weeks (Eds.)
Microsimulation modelling for policy analysis:
challenges and innovations, Cambridge:
Cambridge University Press, 238-247.

Citro C F and Hanushek E A (Eds.) (1997)
Assessing Policies for Retirement Income:
Needs for Data, Research, and Models,
Washington DC: National Research Council.

Clarke G P (1996) (Ed.) Microsimulation for Urban
and Regional Policy Analysis, London: Pion.

Dobson A (1990) Generalised Linear Models.

London: Chapman and Hall.
Duncan A and Weeks M (2000) „Simulating

transitions using discrete choice models‟, in
Mitton L, H Sutherland and M Weeks (Eds.),
Microsimulation Modelling for Policy Analysis:
Challenges and Innovations, Cambridge:

Cambridge University Press, 292-308.

Edwards S (2004) „GENESIS: SAS based
computing environment for dynamic
microsimulation models‟, Mimeo, Department
of Work and Pensions, London.

Galler H (1997) „Discrete-time and continuous-
time approaches to dynamic microsimulation

reconsidered‟, NATSEM Technical Paper 13,
National Centre for Social and Economic
Modelling, University of Canberra, Australia.

Holm E, Lindgren U, Makila K and Malmberg G
(1996) „Simulating an entire nation‟, in Clarke
G P (Ed.), Microsimulation for Urban and
Regional Policy Analysis, London: Pion, 164-

186
Immervoll H and O'Donoghue D (2001) „Towards a

multi-purpose framework for tax-benefit
microsimulation: a discussion by reference to

EUROMOD, a European tax-benefit model‟,
EUROMOD Working Paper, EM2/01,
Department of Applied Economics, University of

Cambridge.
Leombruni R and Richiardi M (2005) „An agent-

based microsimulation of labour force
participation. Some results for Italy‟, mimeo,
LABORatorio R. Revelli, University of Turin.

Nolan B (1990) „Inequity in the Financing and

Delivery of Health Care in Ireland‟, ESRI
Working Paper 16, Economic and Social
Research Institute, Dublin.

O‟Donoghue C (2001a) „Dynamic Microsimulation:
A Survey‟, Brazilian Electronic Journal of
Economics, 4(2).

O‟Donoghue C (2001b) „Redistribution in the Irish

Tax-Benefit System‟, Unpublished PhD thesis,

London School of Economics, UK.
O‟Donoghue C (2002) „Redistribution over the

lifetime in the irish tax-benefit system: an
application of a prototype dynamic
microsimulation model for Ireland‟, Economic
and Social Review, 32(3), 191-216.

O‟Donoghue C (2005) „Assessing the impact of
pensions policy reform in Ireland: the case of
increasing the pension age‟ in Fornero E and P
Sestito (Eds.) Pension Systems: Beyond
Mandatory Retirement, Cheltenham: Edward
Elgar, 107-143.

O‟DONOGHUE, LENNON AND HYNES The Life-Cycle Analysis Model (LIAM) 31

O‟Donoghue C, Baldini M and Mantovani D (2004)

„Modelling the redistributive impact of indirect
taxes in Europe: an application of EUROMOD‟,

EUROMOD Working Paper no. 7/01,
Department of Applied Economics, University of
Cambridge.

O‟Donoghue C, Ballas D, Clarke G and Lennon J

(2005) „Location choice decisions in Ireland‟,
paper presented to the conference Modelling
Urban Social Demographics, University of
Surrey, Guildford.

Orcutt G, Merz J and Quinke H (Eds.) (1986)
Microanalytic Simulation Models to Support
Social and Financial Policy, Amsterdam: North-

Holland.
Pudney S E (1992) „Dynamic simulation of

pensioner‟s incomes: methodological issues
and a model design for Great Britain‟, Dept. of
Applied Economics Discussion paper, MSPMU
9201, University of Cambridge.

Sauerbier T (2002) „UMDBS - a new tool for

dynamic microsimulation‟, Journal of Artificial
Societies and Social Simulation, 5(2).

Wolfson M and Rowe G (1998) „LifePaths – toward
an integrated microanalytic framework for
socio-economic statistics‟, paper presented to
the 26th General Conference of the

International Association for Research in
Income and Wealth, Cambridge, UK.

Appendix 1 Macro alignment in LIAM

In LIAM, macro alignment occurs as follows:

1. Specify alignment sheets, that need to be the

same shape for each process (but macro can
be a subset), as does the predictor

2. Create a temporary set of alignment

structures of type talign (= n+1, where n is
the number of processes to be macro aligned -

structure (0) is to store the macro level)

3. For each sub process, run through conditions

and count the number of people (level.nPer)

who meet conditions who are in each
alignment cell (we don't store predicted
probability at this point as we don't know it -
maybe simply assign zero and use the existing
code)

4. For macro process, do the same

5. Multiply the cell p times the number in cell N

= np, the number to be selected in cell

6. If the sub-processes are more disaggregated
than the macro level, collapse to the lower

level by summing N over the higher level (ie

across education levels)

7. Now we have the N's for the 2 dimensional

table for macro and each sub-process. Sum
over sub-processes to get expected overall
N_t and compare with the Macro N_m

8. To adjust multiply the highest level of the

macro sheet (in this case level 2) in each of
the sub-process by N_m/N_t

9. Backup original Alignment numbers (to be

used in the following year)

10. Store new Alignment totals in the sub-process

alignment structures

