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ABSTRACT: This paper describes a flexible computing framework designed to create a dynamic 
microsimulation model, the Life-cycle Income Analysis Model (LIAM). The principle computing 

characteristics include the degree of modularisation, parameterisation, generalisation and robustness. 
The paper describes the decisions taken with regard to type of dynamic model used. The LIAM framework 
has been used to create a number of different microsimulation models, including an Irish dynamic cohort 
model, a spatial dynamic microsimulation model for Ireland, an indirect tax and consumption model for 
EU15 as part of EUROMOD and a prototype EU dynamic population microsimulation model for 5 EU 
countries.  Particular consideration is given to issues of parameterisation, alignment and computational 
efficiency. 
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1. INTRODUCTION 
 

Population-based dynamic microsimulation models 
are programs that are used to forecast 
populations into the future and to assess the 
impact of economic and demographic change on 
public policy. In particular these models have 
been used to analyse existing policy and to design 
policy reforms in inter-temporal policies such as 

education, pensions, long-term care and spatial 
policy. 
 
The objective of this dynamic modelling 
framework is to incorporate a time dimension into 
policy analysis. Using models based on cross-
section data simply allows one to look at the effect 

of policy at one point in time. Using cross-
sectional data one is limited in the simulation of 
policy instruments which depend on inter-
temporal factors such as pensions. A dynamic 
microsimulation life cycle model allows one to 
examine policy over time; for example life course 

redistribution, forecasts of cross-sectional 
redistribution and the simulation of pensions. 
 
Designing dynamic microsimulation models is a 
large model building project involving many 
disciplines such as economics, social policy, 
statistics and computer science. This paper 

describes an innovative mechanism for making 
dynamic microsimulation models easier to 
construct, using a generalised method. The result 
is the Life-cycle Income Analysis Model (LIAM).  In 

addition we outline a number of current 
applications of LIAM to further illustrate the 
flexibility of the approach adopted. 

 
The paper is designed as follows. Section 2 
describes the objectives of the paper, with section 
3 describing the main model features. Section 4 
overviews the different types of process modules, 
while section 5 discusses alignment. Section 6 

discusses some efficiency features. Section 7 
describes some of the implementations of LIAM 
and section 8 concludes. 
 

2. OBJECTIVES 
 

The construction of a dynamic model is a very 
large task, both in terms of grasping the types 
and forms of behaviour that take place over a 
lifetime and the effort in programming thousands 
of lines of code. 
When DMMs were first developed, they 
represented advances in computer science as well 

as in social science methodology.  However, 
despite dynamic microsimulation models (DMM) 
having existed since the 1970s (Orcutt et al., 
1986), developments in the field of 
microsimulation have progressed only slowly 
(O‟Donoghue, 2001a). Part of the reason has been 
the computational resource requirements. In 

many countries data limitations have also 
significantly limited developments. 
 
Fortunately, in recent years, both difficulties have 
started to be overcome.  Computers have 
increased in speed, now allowing very powerful 

models to be constructed on Personal Computers.  
At the same time the establishment of household 
panel datasets in many countries, for example the 
European Community Household Panel Survey, 
the British Household Panel Survey and the 
German Socio-Economic Panel, allied to the 
increasing availability of administrative datasets, 

removed the barrier to the estimation of dynamic 
behavioural processes. 
 
Even so, the spread of the DMM technology and 

the development of the field has been relatively 
slow. The models that are being used at present 
are not doing very much more than the DYNASIM 

model in the late 1970‟s.  A large potential reason 
is the apparent benefit to cost ratio. Many 
institutions, when faced with the large cost of 
developing a dynamic model, feel the money 
better spent on other techniques. 
One significant contributor to the cost of 

development is the cost in producing the 
computing environment of the model. In addition, 
because the computing necessary to produce a  
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dynamic microsimulation model is so complicated, 

computing development has often taken 
precedence over developing better behavioural 

equations. It is therefore important to focus on 
ways of reducing the cost of building this initial 
framework. 
 

O‟Donoghue (2001a) surveys the dynamic 
microsimulation models that have been 
constructed, describing in particular the design 
choices that have been faced. While most models 
have been built as stand-alone efforts, a number 
of attempts have been made to avoid the start-up 
costs and learning curve in building the model by 

utilising the same framework for alternative 
applications. There were some efforts in the 1970s 
to write generic microsimulation computer 
software packages. However because of the 
complexity of the systems to be simulated, users 
typically found that they had specialist 

requirements that these software packages could 

not cater for.  (See, for example, Leombruni and 
Richiardi, 2005.) 
 
Although not designed with objective of 
constructing multiple dynamic microsimulation 
models, the code from CORSIM model (Caldwell, 

1996) has been stripped down and used as a 
template in the construction of the Canadian 
DYNACAN, Swedish SVERIGE and the US Social 
Security Administration models. Subsequently 
there have been four examples of programs that 
have been written explicitly for multiple dynamic 
microsimulation model construction: ModGen 

(Wolfson and Rowe, 1998), UMDBS (Sauerbier, 
2002), GENESIS (Edwards, 2004) and LIAM – the 
focus of this paper. 
 

MODGEN is a computer language designed to 
create microsimulation models, and has been used 
to create a number of microsimulation models 

(dynamic and static) within the Canadian 
government, such as Lifepaths. UMDBS is a 
simulation system developed at Darmstadt 
University as part of academic research. It is 
implemented in the object oriented language 
Smalltalk and its main applications are socio-

economic investigations. GENESIS is a SAS based 
modelling framework being used within the UK 
Department of Work and Pensions to create the 
Pensim2 pension age dynamic microsimulation 
model and the state pension forecasting model.  
LIAM, unlike MODGEN, is a closed model, in which 
spouses are drawn from individuals within the 

model population.  In addition, LIAM is fully 

accessible to researchers, whereas GENESIS is 
currently available for internal government use 
only. 
 
In this paper we describe the LIAM framework 
which was developed, ironically, because of the 

limited resources available to the author. Dynamic 
models have typically been constructed by 
governmental institutions (MOSART, SESIM, 
DYNACAN, PENSIM2) or by major research grants 
(SVERIGE, DYNASIM, POPSIM), although a 
number of models have been constructed as part 

of PhDs (Harding, Baldini). Not being funded by a 

major research grant or by a government 
institution LIAM falls into the latter “low budget” 

category, being developed initially as part of a 
PhD and latterly expanded with small research 
grants and with the assistance of a number of PhD 
students.   As a result, it is freely acknowledged 

that current implementations of LIAM are 
relatively basic compared to the existing 
proprietary models listed above.  But these 
shortcomings can be overcome, subject to 
improved data and funding availability.  The 
advantages already offered by LIAM lie in its 
flexibility and modularity, and its objective of 

providing an unconstrained model development 
platform, adaptable to future uses and future 
proofed to allow for future enhancements. 
 
The initial application of LIAM was a single cohort 
life-course analysis of the redistributive impact of 

the Irish Tax-Benefit system, using relatively 

unsophisticated data and behavioural equations.  
Subsequent developments (described in more 
detail below) include improved data (2-8 years in 
the panel data underlying the behavioural 
estimations), the addition of a graphical user 
interface,  the move to a multi-cohort population 

model, and the use for alternative policy analyses 
such as spatial, indirect taxation and international 
comparisons. Future developments that are 
planned include improving the behavioural 
equations to respond to changes in the policy 
environment such as labour supply retirement and 
migration. 

 
In order to avoid in-built software limitations 
inhibiting future model developments, careful 
thought is necessary in the design of a flexible 

modelling framework. There are a number of 
features that are desirable in such a framework: 
 In order to deal with new datasets with ease, 

using different sets of variables should not be 
a problem. 

 It should be easy to incorporate new 
behavioural information. 

 Ability to run on a personal computer using 
standard “inexpensive” software. 

 It should be straightforward to make changes 
in the model model using the framework, even 
if the model has not been used for a period of 
time, or is being used by multiple analysts. 
This implies transparency in the operation of 
the framework and also flexibility in the way in 
which behaviour can be incorporated in the 

model 

 A framework that is robust to the modelling 
changes desired. 

 Computational efficiency as, despite 
computing time decreasing with the 
availability of cheaper and faster computers, 
computational demand has increased at a 

faster rate. 
 A modelling environment that allow the user 

to focus more on the estimation of behavioural 
equations rather than on computing issues. 

 Ability to take account of, and examine, the 
feedback effects of policy reforms. 
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3. FRAMEWORK FEATURES 

 
In this section we describe the main aspects of 

LIAM, focusing initially on the general structure of 
the framework and then elaborating the data 
structure and issues relating to modularisation 
and parameterisation. 

 
Structure of Framework 
A dynamic microsimulation model takes individual 
objects (individuals, households, farms, 
companies) and simulates the probabilities of 
various events occurring at various points in time.  
Dynamic events may of course occur at the same 

point in time as other events. 
 
Figure 1 describes the main operations of the 
ageing component of the LIAM dynamic 
microsimulation model. In this context „ageing‟ is 
a generic term covering any dynamic event that 

involves updating object characteristics over time.  

Here the operation of one particular ageing 
module at one point in time is examined. In reality 
this process occurs on a number of occasions as 
all the individuals in the database pass through a 
number of ageing modules at each point in time. 
 

Data for each person are firstly taken from the 
database, having been transformed into the model 
data-structure, which is described in more detail 
below. The individual is then passed through each 
ageing module in turn. The ageing modules to be 
used are specified as part of a parameter list, 
which allows the order and the types of the 

transition processes to be varied. Input 

parameters for each ageing module are stored in 

Microsoft EXCEL spreadsheets and are accessible 
via the user front end. Output from each ageing 

module is stored, in memory, in alignment storage 
matrices. For example, alignment regressions 
produce a deterministic component XB to which is 
added a stochastic component, . These are stored 

in a dynamic data structure and ranked with the 
highest Z percent of values taken from the 
exogenous totals in the alignment process. If the 
ageing module is a transition between states, then 
the output will be a probability, otherwise if the 
ageing module is a transition between continuous 
amounts, for example incomes, the output is a 

real variable. When all individuals have been 
passed through the particular ageing module, 
alignment occurs (see section 5 below for a 
description). This ensures that aggregates from 
the micro model match macro aggregates. Finally 
if a variable for any individual changes then this 

change is registered in the database (i.e. in both 

the physical relational database, stored on the 
hard disk in ASCII and the virtual database stored 
in random access memory).  In what follows the 
operations of each of these components of the 
ageing module are unpacked in more detail. 
 

Data and Framework Data Structure 
In this section we describe how data is handled in 
LIAM. We describe the database used and how 
data are stored within the framework. The data 
structure or format of the data is very important 
as it determines to a large extent the amount of 
memory required to store the data, which in turn 

influences the speed at which the model can run. 
 
 

 
Figure 1  Description of a Dynamic Module 
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It also has important consequences for the 

flexibility of the model. 
 

Turning first to data storage, input output data are 
stored in ASCII format.  When storing output, 
variables are converted from real to integer as 
integers require less storage space than real 

numbers.  This is achieved by multiplying output 
values by 100 and truncating the result to zero 
decimal places.  For storage we also adopt a 
relational database structure due to organisation 
and memory handling advantages. 
 
Figure 2 describes the data-structure used by 

LIAM. Structurally the data is stored in a hierarchy 
of object types (tobjt) such as person, household 
or firm. Each of these object types themselves 
consists of a number of objects (tobj) such as the 
actual incidence of a person or household. Events 
(tvar1) such as births, tenure status or 

identification number then occur to objects. Each 

event can have a number of incidences or values 
(tval). Within this data-structure persons are 
considered one set of objects and households 
another, with the IDs of the member individuals of 
a household stored as events that can happen to 
households.  This is because persons can be 

members of a number of different households 
over time, breaking down the traditional nesting 
of persons with households associated with cross-
sectional data structures. 
 
We exploit the hierarchical nature of relational 
databases making data storage event driven. 

Storing model output as consecutive cross-

sections would result in severe inefficiencies, as 
each variable would be stored for each output 

period, so for example a person‟s gender would be 
stored for each point in time. Making data storage 
event driven, new data is stored only when a new 
event occurs and thus the data changes. Gender is 

therefore only stored at birth. One can make 
significant savings in memory as a result. Each 
individual variable, however, requires more 
information than is the case in a cross-sectional 
data structure. For each event it is necessary to 
know what event occurred (tvar1), when it 
occurred (tval.evtime), and the value of the event 

(tval.amount). 
 
There are a number of ways in which data can be 
stored within LIAM itself during the simulation. If 
the model were open, as in the case of the 
DEMOGEN or LifePaths models in Canada, where 

new spouses are generated synthetically when 

needed, then all of each individual's transitions 
could be simulated independently of other 
individuals. Thus each individual could be read 
from the database, their life course simulated and 
then stored in the database one at a time. LIAM, 
however, uses a closed model. Except for new 

births or immigrants, no new individuals are 
generated. Marriages, for example, link individuals 
already in the database. This method is more 
straightforward to interpret as it mirrors what 
happens in the real world.  As a result of this 
closed approach, individual behaviour can become 
dependent on the characteristics and behaviour of

 
 

 
Figure 2  Model data structure 

Notes: See text for explanation of object and event types 
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other members of the sample.  For example, 

alignment to required global totals means that the 
chance of employment for an individual is not 

independent of the rest of the population, but 
depends upon the aggregate outcomes of the 
whole labour market. Other operations in the 
model that may depend on other individuals 

include the marriage market and other processes 
which depend on spousal information and 
alignment routines. 
 
Although the model is not solely individual based 
(it is a multilevel model comprising Regions, 
Counties, Districts, Households and Persons), a 

side effect of the inter-person dependency 
engendered by the closed model approach is that 
it is necessary to store all individuals in memory 
during the simulation. To this end, therefore, 
during a model run the virtual database stored in 
memory during the operation of the program 

mimics the structure of the relational database 

stored on the hard disk. Once the data have been 
read from the database into memory, LIAM runs 
through each object type (person, family and so 
on), in turn simulating the life course events 
desired for each object of that type. Simulation 
processes are therefore object-type specific 

 
Typically variables which are components of the 
household data structure are declared in long lists 
within a dynamic model. They may be initialised 
elsewhere and have other operations carried out 
in other parts of the program. As the modelling 
framework is so large and complicated, it rapidly 

becomes difficult to keep track of all the places in 
LIAM which need to be altered when a new 
variable is included. As a result, instead of 
declaring variables within LIAM, we declare the list 

of variables to be used separately in a parameter 
sheet (dyvardesc) .LIAM then creates space for 
the variable, initialises the data and carries out all 

necessary transformations and operations 
automatically.  This minimises the number of 
model alterations necessary when a new variable 
is introduced, keeping the framework entirely 
flexible with regard to the set of variables used 
whilst maintaining its robustness.   For example, if 

the user wishes to introduce a new instrument 
with an output variable such as health status, 
then the user simply needs to introduce the 
variable into the parameter sheet and LIAM will do 
the rest, without the user having to recode the 
framework itself. Another advantage of the 
flexible declaration of variables is that, because 

variables are stored in vectors, new composite 

variables can be produced easily. For example, a 
complex variable like disposable income, if not 
simulated directly, can be generated from the 
vector of its components such as employment 
income and capital income. 
 

Another important advantage of the hierarchical 
method of data storage is the ease with which 
duration information can be accessed. As the date 
and value of each event is stored it is possible to 
determine such information as duration, duration 
in the last 12 months, date an event first 

occurred, date an event ended, duration in a 

particular state and so on. Information of this kind 
is frequently required by tax-benefit systems and 

other policy analysis. Additionally it is easy to 
access earlier values of an event such as previous 
earnings. 
 

Population versus Cohort 
The initial database depends on the purpose of the 
simulation. One of the key distinctions in the 
literature is between longitudinal or single cohort 
models and population or cross-section/multi-
cohort models. However, this distinction is now 
largely redundant due to advances in computing 

power. From a computing perspective, a cohort 
can simply be seen as an initial sample of 
unrelated individuals aged 0, while the population 
contains a sample of individuals of different ages, 
some of whom are related. As a result, the 
computing framework has been developed to 

handle both types of analysis. Running LIAM as a 

dynamic population model requires that the initial 
cross-section is stored in the required manner, 
while running the model as a dynamic cohort 
model requires the model to first generate an 
initial cohort. 
 

Modularisation 
The use of modularisation is an important 
technique that helps achieve the objectives of 
flexibility, transparency and robustness that LIAM 
requires. Modularisation means that components 
within the LIAM are designed to be as autonomous 
as possible. Modules are the components where 

calculations take place, each with its own 
parameters, variable definitions and self-contained 
structure, with fixed inputs and outputs. The 
result is a set of independent components that do 

not interact with each other directly, allowing the 
framework to operate as a collection of 
independent building blocks. Because each 

process module is entirely self contained, each can 
be run independently, left out or replaced by an 
alternative module. Constructing a program in this 
way allows for the model to be easily expanded to 
deal with new behavioural equations or functions. 
Also, because it allows the user to focus on 

individual components one at a time, without 
interaction with the rest of the program, the 
robustness of the model can be improved. 
 
Linkages 
Many policy instruments depend upon multiple 
units of analysis. So, for example, pensions may 

depend upon individual characteristics such as 

contribution histories, age and so on, taxation 
may depend upon family characteristics such as 
both spouses‟ incomes, and social protection 
instruments and welfare measures upon the 
household unit. Similarly sociological analyses and 
long-term care analysis may depend upon wider 

kinship networks. These linkages are not strictly 
hierarchical (e.g. region, household, family, 
individual).  The may, in fact, consist of a web of 
linkages (region, firm, household, family, 
individual, mother, father, partner, children and so 
on). This multi-level structure with its complex 
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interactions between levels is one of the main 

complications of microsimulation models that 
make it difficult to use person-based modelling 

frameworks. While it is not infeasible to simulate 
using non-hierarchical linkages such as those 
between relatives across households using other 
software packages such as social simulation and 

statistical packages, the non-hierarchical structure 
often requires one to be "creative" in designing 
the model due to inflexibilities in the model as 
they are often non-standard requirements. In 
contrast purpose designed microsimulation 
packages such as LIAM can have these data 
structures in-built, improving the transparency 

and flexibility of the modelling environment. 
 
In the LIAM framework, the mechanism of linking 
objects has been automated as a relational 
database. Potentially any object can be linked to 
an object of either the same or a different object 

type. For example individuals of object type 

person (p) will be linked to their household of 
object type (h), while in turn the household is 
linked with the individuals in the household. 
Therefore calculation of the number of persons in 
a household is a process carried out at the 
household level. This new household level 

variable, npers, can be accessed by individual 
processes using the prefix h_npers.  (The actual 
prefix used is user-defined.) In similar fashion 
linkages can be made between objects of the 
same type.  For example a child can be linked to 
parent‟s information, accessing mother‟s 
education level using m_edlevel and father‟s using 

f_edlevel. 
 
In the initial framework, there are no predefined 
linkages as the objects can be of any type defined 

by the user. The user pre-defines all linkages 
using the parameterisation described below to 
essentially create a web of linkages between 

objects; essentially defining keys to link tables. As 
long as the nature of the linkage is defined, it is 
then possible at any level of the model to access 
information from another level. This is quite a 
powerful feature of the data-structure, saving 
both time and memory. In the absence of these 

linkages, such as h_npers, a new process would 
have to be simulated which would store this 
number of persons in a household as a person 
level variable p_hnpers (say), which is analogous 
to a flat file, where household level variables are 
stored at the person level. The use of linkages or 
keys provides the space saving advantages of a 

relational database and avoids the simulation of 

an extra process to convert the household variable 
to the person level. 
 
Creating and Killing Objects 
While creating a new object (person, family, 
household, enterprise) is itself not a very 

complicated task, creating space and assigning 
initial default values, creating a new object to 
mimic the birth of a new person is rather more 
complicated. As a result we have had to develop a 
specific as opposed to generic new_birth function. 
The assignment of variable values such as single, 

age zero, no education and so on is 

straightforward. However it is also desirable that 
the new child inherits the linkages of the parent. 

So, for example, the partner (if any) of the 
mother at birth becomes the child‟s father.  
Similarly other children of the mother become 
siblings and the hierarchical linkages such as the 

household, family and region of the mother are 
also inherited by the child. 
 
Analogously, “killing” a person is also more 
difficult that killing an object. The individual needs 
to be extracted from the web of kinship networks 
and other linkages of which they form part. For 

example, the number of persons in a household 
decreases by one, whilst the spouse becomes a 
widow. At the same time bequest of accumulated 
wealth may need to be transferred and, in the 
case of pensions systems, contributions or 
entitlements may need to be transferred to 

surviving dependants. Again the possible 

complexity of the operation is far too difficult to 
generalise, so again object-specific routines have 
been required. 
 
Migration 
Migration is another complex operation. From the 

point of view of LIAM, emigration is analogous to 
killing someone.  The reason for this is that, in a 
national model, we do not track individuals while 
they are abroad. (Technically, as pension rights 
can be accumulated overseas, one may need to 
simulate their life-histories while overseas, but 
this has been beyond the capacity of any existing 

model.)  A variation of the pageant algorithm 
(Chénard, 2000) is used to ensure that the 
migration of family units results in national 
individual level aggregates being achieved. 

 
Immigration, however, is a more difficult 
situation. An immigrant differs from a new birth in 

that they have an accumulated set of 
characteristics and potentially are accompanied by 
other family members. One solution is to simulate 
the range of characteristics of new immigrants on 
arrival. However the range of characteristics is 
very broad and variable and so it would be very 

difficult to retain the correct multi-dimensional 
distribution of characteristics. To avoid this 
problem we sample (with replacement) from a set 
of immigrant households in the data. Thus 
whenever we need an immigrant household we 
simply select a “real” (data-dependent) family 
with the actual characteristics of a new immigrant 

family. In addition to preserving the multi-

dimensional distribution, it saves substantial 
computing time compared to having to simulate 
all of the relevant immigrant characteristics. 
 
Parameterisation 
In order that modules and other components of 

LIAM can be changed with ease, it is necessary to 
store model parameters externally. Therefore, 
where possible, parameters are not hard coded 
within the framework. Figure 3 details the set of 
parameters used by the modelling framework. The 
sets  of  parameters,   representing  the  flow  of  
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Figure 3  Parameter Sheet Hierarchy 

Notes: See text for explanation of parameter types 
 
 
control in the model, are in some sense 
hierarchical. 
 
At the top level we have dyrunset parameters 

which contain the parameters necessary to run 
the model, detailing directories (location of input 
and output files), time period to be run and so on. 
The remaining parameters deal with either the 
data structure or the simulation process. Dashed 

lines in Figure 3 indicate this division. 
 

On the data side the highest level parameters are 
contained in objtype. This file tells the model how 
many object types there are (region, household, 
person and so forth). LIAM creates each object 
type based upon the list defined here and assigns 
user-defined prefixes (for example, r,h and p). 

The framework then looks for files objtype_x 
containing the incidences of each of the object 
types (r, h, p), which in turn contain the 
identification numbers (IDs) of each object of that 
particular object type. So objtype_p would contain 
the IDs of all persons. 
 

Related to the set of object types is a set of 
variables associated with each type in the 

dyvardesc file. In this file, all variables used in 
LIAM are declared and described. (In the front 
end, the parameter files have equivalent menus.) 
It is, in essence a data dictionary, for the model. 
This file contains information on the following 

attributes of each variable: 
 variable name 
 variable type (binary, multi-category, 

continuous) 
 whether an income variable (monetary 

amount that can be added to other monetary 

amounts) – this prevents categorical data 

being summed; for example, adding gender to 
employment 

 limits of the variable (upper and lower 
bounds) for debugging and validation 

 whether or not a categorical variables (if so 
how many categories and the list of categories 
– for tabulation purposes), 

 whether or not needs to be updated during 
the simulation to account for inflation 

 default values to be taken by new persons 
 data description (describes variable names) 

 
Associated with each variable, there is a data 
table containing information about the object(s) 
associated with the variable (who), the time the 
event occurred (when) and the value of the 
variable (what). 

 
While each data table within an object type is 
linked by the key or object ID, we need further 
information to link objects of the same or other 
type. The linkage parameters define the set of 
possible links between objects. The user needs to 
define a name for the linkage (for example, ph – 

person to household; hp – household to person) 
and the equivalent origin and destination types (p 

for link ph; h for link ph). These linkages between 
objects are stored in the linkage file link_xy.  
Subsequently, for each linkage listed in link_xy, 
LIAM pairs the relevant origin objects and 
destination objects (for example children to 

parents) and stores the resulting origin and 
destination IDs in a link-specific file (for example 
pc for children and parents). 
 
We now consider the set of parameters that define 
the simulation processes. The highest level is the 

agespine or process spine/list. In any simulation 

 

 

 Parameters dealing with the data structure    Parameters dealing with simulation process 

objtype 
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objtype_x 
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there is an implicit ordering, and events are 

triggered through conditions. The process spine 
contains the list of modules to be run in the 

dynamic model, so that by varying the order of 
the modules and varying the content of the list, 
one can vary the types of processes that can be 
run in the model. This feature exploits the 

modularisation inherent in LIAM, where because 
each process is seen as a separate building block, 
the number, type and order of processes can vary 
without having to change the programme code. 
Each process or module has a corresponding 
parameter sheet in the parameter file 
“Transitions”. These parameter files tell the model 

the output variables of each process, the type of 
process, whether a process needs to be aligned 
and the actual process parameters themselves, 
such as the transition rates, regression equation 
and policy rules and so on. If a particular process 
is to be aligned, then LIAM will look for an 

appropriate set of alignment parameters. 

Sometimes individual parameters may be required 
to be changed between runs without any change 
to the set of processes. A reform to a pension 
simulation module where the replacement rate 
was changed is an example. The polparam 
parameter set contains information associated 

with each parameter for each possible “system”, 
where the system to be run is defined in the 
dyrunset parameters. 
 
 
4. PROCESS MODULES 
 

This section describes the main process types that 
can be used by LIAM. This refers to the collection 
of operations that are simulated on objects during 
a simulation. These include demographic 

processes such as birth, marriage, having children 
and death, education, labour market processes 
such as employment and unemployment, the 

simulation of incomes and interactions with the 
tax-benefit system. 
 
In order to aid flexibility, we classify processes 
under a number of headings. In this way, instead 
of programming each module separately, we only 

need to program the module type once. In order 
to run a module, we then only need a module 
name (which is included in the process spine), a 
module type to determine which program to run 
and a set of parameters which is fixed for every 
process type. At present there are 6 module 
types: 

 transition matrices, in the form of a log linear 

model (trap) 
 transformations (tran) 
 regressions, both with continuous and limited 

dependent variable (regr) 
 macro alignment (discussed in section 5) 

(macro) 

 marriage market (mmkt) 
 tax-benefit system (tb) (actually a collection 

of modules; we have linked LIAM to the 
EUROMOD EU15 tax-benefit model and to 
other tax-benefit routines) 

 

The first component of a parameter file contains 

details about what conditions need to hold for the 
process to be run. At each point (step) in time, 

each individual is passed through the module. If 
the conditions hold, then the module calculations 
are carried out and the output passed to the 
alignment component of the module. The output 

for each individual is stored until all individuals 
have passed through the module. The alignment 
component then ensures that the aggregates 
correspond with external control totals. 
 
Transition Matrices 
One of the most important processes in a dynamic 

model is the transition between different discrete 
states. Transition Matrices are often used to 
perform these operations. They specify the 
probability of an individual with particular 
circumstances moving from state A to state B. In 
this framework, transition matrices can be stored 

as log-linear models (See, for example, Dobson, 

1990). In this way transition rates are 
decomposed into average and relative transition 
rates. As a result extra-relative transition rates 
can be added with ease. For example, if a 
mortality rate on average fell by 0.1% every 10 
years, then a time-dependent relative probability 

parameter of 0.999 could be added. Similarly, this 
approach allows the model builder to combine 
information from different sources. So, for 
example, we combine actual age-gender specific 
mortality rates for 1991 taken from life-tables and 
use relative mortality rates taken from Nolan 
(1990) that incorporate socio-economic relative 

mortality rates. 
 
Regressions 
The second type of transition process used is 

based upon standard regression models. At 
present, this type of module allows four types of 
dependent variable 

 standard continuous dependent variable 
 log dependent variable, allowing for use of the 

log normal distribution. 
 logit discrete choice dependent variable 
 probit discrete choice dependent variable 

 

Any variable in the model can be used as a 
dependent variable and any variable can be used 
as an explanatory variable. The error term can 
also vary. The default error term takes a normal 
distribution with independent disturbances. 
Following Pudney (1992), LIAM also allows for the 
error term to be decomposed into individual 

specific (un) random effects and general error 

components (vnt). However, more complicated 
error decompositions are also possible. This allows 
some degree of heterogeneity to be assigned 
specifically to individuals. So, for example, in 
determining earnings the individual specific error 
may represent some difference in innate ability, 

while the general error term represents random 
variation over time. Breaking up the variation in 
this manner will tend to reduce within lifetime 
variation and prevent to some degree the 
existence of very unusual life paths. 
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In the LIAM modelling framework, transitions 

occur at discrete time intervals because of the 
weakness of the data and because of the desire to 

be able to align the data. As Galler (1997) points 
out, the statistical shortcomings associated with 
the use of discrete time models make it is 
desirable to use short term discrete time periods 

such as a month. As the computing requirements 
can be substantial for monthly simulations, LIAM 
is sufficiently flexible to allow the user as the 
ability to specify the time period to be used and so 
monthly or annual periods can be simulated.  For 
a fuller review of the advantages and 
disadvantages of continuous time versus discrete 

time, see O‟Donoghue (2001a). 
 
Transformations 
While regression models and transition matrices 
are stochastic processes, involving a random 
component, some processes are deterministic. 

Examples include age, which depends on the date 

of birth, widowhood, which depends on the death 
of a spouse and so on. Likewise if an individual 
moves from year 6 in education to year 7, years 
of education increase by 1. 
 
Within the transformation-types handled by LIAM 

there are two types of deterministic 
transformation, gen and fgen. The gen functions 
are of simpler types, utilising calculation routines 
combining sets of variables using standard 
operations ({+,-,*,/, max,min,^,(,)}). The fgen 
set of functions represent ad-hoc programs. It is 
where we exploit, for example, the relational 

database structure of the data in operations such 
as the number of persons in a household, where 
the function counts the number of objects of type 
person linked to the object household as defined 

by the link_hp link file. Similarly it is where ad-hoc 
functions such as new_birth and killperson are 
defined. While gen functions and predefined fgen 

functions are pre-coded and parameterised so that 
new users can employ them, new fgen functions 
such as the pension system of a new country need 
to be programmed by the user if the existing 
functionality does not allow it. 
 

Marriage Market 
If an individual is selected to marry or form a 
partnership a process is needed to determine 
which spouse they will take. The process used 
here is to take the characteristics of the individual 
chosen to marry and the characteristics of each 
possible spouse and determine the likelihood of a 

match. Similar to the method used in other 

models such as the CORSIM model, this is done 
using a logit model that estimates the probability 
of marriage between pairs of individuals. The 
parameter file therefore is identical to that used in 
the regression process type. The module itself 
forms a matrix of the characteristics of the n men 

and n women selected to marry. It estimates a 
probability for each pairing and assigns a match to 
the couples with the highest probability of 
marrying. 
 
Bouffard   et  al.   (2001)   have  identified   some 

problematical issues associated with the marriage 

market, in particular with strange matches 
occurring amongst the last people to be married in 

a particular simulation. In order to avoid these 
issues, we allow the user to create a super-set of 
potential male partners, so that rather the last 
female in the marriage pool being forced to select 

an unlikely match, there remain a number of 
males to choose from. In addition we employ the 
Order of Decreasing Differences algorithm 
proposed by Howard Redway at the UK 
Department for Work and Pensions, which creates 
a measure of the distance of an individual from 
the centre of the population (or the average 

characteristic of the population) and first selects 
for matching the females with the most unusual 
characteristics, who are likely to be the most 
difficult to match. The logic is that those in the 
centre of the data are “average people” who are 
more likely to find a good match than someone at 

the extremes. 

 
Policy Processes 
The fourth process type is the simulation of the 
tax-benefit system. Re-emphasising the desire to 
reuse code and, wherever possible to avoid 
duplication, the dynamic framework has been 

made flexible enough to link with other specialist 
programs such as pre-existing tax-benefit models. 
As a result tax-benefit routines from other 
models, such as EUROMOD, can be seamlessly 
accessed and thus used as module components of 
the dynamic model. 
 

Behavioural Response 
A desirable feature often ignored in dynamic 
microsimulation models is the ability to include 
feedback loops so that behaviour can respond to 

changes in public policy. A criticism made by Citro 
and Hanushek (1997) is that dynamic models are 
insufficiently flexible to incorporate the demands 

of behavioural response. In order to be able to 
simulate behaviour, typically the model needs to 
be able to call a policy simulation routine a 
number of times to quantify the financial impact of 
alternative choices on the decision in questions 
such as the choice to work or retire. As a result 

the software framework has been designed to be 
able to incorporate feedback loops. The degree of 
modularisation that exists in the framework allows 
any number or order of modules to be run and for 
modules to be able to be run a number of times. 
 
For example, in O‟Donoghue (2001b) we 

implemented a simple labour supply model where 

labour supply depended on the tax-benefit 
system. In order to have labour supply depend on 
tax-benefit policy, the tax-benefit system needed 
to be run once as an input into the labour supply 
module and again, after labour supply has been 
determined, in order recalculate taxes and 

benefits in the light of the resulting behavioural 
decision. In O‟Donoghue (2001b) the model used 
the tax-benefit system as an input into decisions 
to work, decisions to seek part-time employment 
versus full-time employment and to become self-
employed. The tax-benefit system therefore 
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needed to be run 5 times to examine the impact 

of the system on the choice faced by an individual. 
In the case of spouses, whose behaviour can be 

inter-dependent, the tax-benefit system needed to 
be simulated 17 times (4 decisions for each 
spouse, plus one run on the basis of resulting joint 
behaviour). As a result incorporating behavioural 

response, although possible, can be 
computationally expensive. 
 
Other possible behavioural routines that could be 
included are retirement decisions, consumption 
and benefit take-up. Although computationally 
expensive, the framework is sufficiently flexible 

should the user require and the computing power 
becomes available. 
 
Robustness 
Finally, in order to avoid robustness problems due 
to modules being incorrectly specified, the model 

contains a debug device which ensures that all 

inputs required by a module are actually available 
(i.e. have either been generated in the model or 
read from the database) before each module can 
be run. 
 
 

5. ALIGNMENT 
 
The section describes the alignment function 
contained in LIAM. The objective of alignment is to 
ensure that output aggregates match external 
control totals. The reason this is done is that 
micro behaviour (both social and economic) is 

extremely complex and, micro-theory being 
limited, the full variability of the system (in this 
case the life paths of individuals) cannot be 
accurately predicted. In addition, a household 

model only makes forecasts about a small part of 
the economy and largely ignores interactions with 
the rest of the world economy. Finally, data taken 

from relatively short periods of time may not fully 
reflect dynamics over time. For all of the reasons 
dynamic micro-models may not be able forecast 
aggregate characteristics of the population well. 
 
Discrete choice models 

In discrete choice models the output for each 
individual is a probability. In order to use these 
models for predictive purposes, a decision rule is 
necessary. In other words, what forecasted 
probability (or higher) will produce an event. In 
order to predict a state with a logit (or probit) 
model, one draws a random number uniformly 

distributed number ui . When 

 

)(logit-1 ii Xu   

 
or 
 

)(p -1
ii Xrobitu , 

 
then a state is predicted to occur. 

 
Another use of alignment is in correcting for 
predictive failures of econometric models. For 

example, when using discrete choice models such 

as logit or probit models, the predictive power is 
often poor. Duncan and Weeks (2000:292) 

highlight that “even in functionally well-specified 
models, the predictive performance is poor, 
particularly where some states are relatively 
densely or sparsely represented in the data”. 

Greene (1997:894) attributes this to the fact that 
“the maximum likelihood estimator is not chosen 
to maximise a fitting criterion based on prediction 
of y, as it is in the classical regression (which 
maximises R2). It is chosen to maximise the joint 
density of the observed dependent variable.” Thus 
the further the probability of an event occurring is 

from 0.5, the less effective these decision rules 
are at producing the desired result. As a result 
models may under or over predict the number of 
events. So, for example, if 5% of individuals of 
individuals should have the event, then the logit 
model may not necessarily produce 5% of events. 

Alignment, however, will constrain the event to 

occur to 5% of individuals. This is effectively a 
calibration mechanism and will produce the 
correct proportion of events. Of course, care must 
be in its use as alignment may lead to the 
disguising of errors in model specification. 
 

The types of control totals that can be used to 
align to include: 
 The aggregate proportion/number in a state or 

moving between states 
 The average event value 
 The distribution of values 
 The average growth rate in the value of an 

event 
 
In this paper we shall deal specifically only with 
the first type 

 
A simple analogy for the relationship between 
alignment and the process modules is that the 

process modules, such as logit models, produce a 
ranking variable, while the alignment mechanism 
selects the number of transitions. For example, in 
our econometric model we may have an equation 
of the probability of dying as described in equation 
(1), that depends on age, gender and whether an 

individual is disabled or not. Assuming that 
disabled people have a higher mortality rate, then 
given the same age and gender and distribution, 
the mortality distribution for disabled people will 
be higher: 
 

iiii

iii

AgeDisabledGender

AgeDisabledp

43

21)logit(
 (1) 

 
The deterministic component of the model will 
result in those with a higher risk having a better 
chance of the event occurring, while the stochastic 
part (i) will ensure that there is some variability 
(so that not only those with high risk are 

selected). This model therefore produces the 
person-specific risk of dying. 
 
In order to select the number of people that die, 
we use the alignment probabilities.  Firstly 
individuals are grouped into the appropriate age 
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and gender groups. As everyone in the relevant 

group will have the same age and gender, they 
only differ by the deterministic component for 

disabled people, ß1 x Disabledi + ß4 x Disabledi x 
Agei, and the stochastic component i. The object 
then is to select to die the people in the group 
with the highest probabilities of dying. If ß1 is 

positive, proportionally more disabled will die than 
non-disabled. As a result we see that the output of 
the model equation is used to rank the individuals 
to whom the event occurs, but to leave the 
decision of experiences the event to the alignment 
process. 
 

Implementation 
In this section we describe a practical method for 
ranking individuals for alignment. We take as our 
reference point a logistic model: 
 

)(logit-1 iii Xp              (2) 
 

Utilising the model 
 

ii Xp )*(logit  
 

will result in those with the highest risk always 
being selected for the event. Continuing our 
example above, the disabled, all other things 
being equal, would be selected to have a die. In 
reality those with the highest risk will on average 
be selected more than those with lower risk, 

rather than simply selected those with the highest 
risk. As a result some variability needs to be 
introduced. 
 
Models based on the CORSIM framework such as 
the DYNACAN model (Chénard, 2000) utilise the 

following method. Firstly, predicted probability is 
produced using our econometric model: 
 

)(-1
ii Xlogitp* . 

 

Next, a random number, ui, is drawn from a 
uniform distribution, and subtracted from the 

predicted probability, p*
i, to produce a ranking 

variable, ri = p*
i – ui. This value is then used to 

rank individuals so that the top x% of values are 
selected. 
 

A concern about this method is that the range of 
possible ranking values is not the same for each 
point. In other words, because the random 
number ui  [0,1] is subtracted from the 

deterministically predicted p*
i, then the ranking 

value takes the range ri  [-1,1]. However the 

ranking value for each individual will only take a 
possible range ri  [ui–1, ui]. So, for example, if 

p*
i is small, say = 0.1, the range of possible 

ranking values is [-0.9, 0.1]. At the other extreme 
if p*

i  is large, say = 0.9, then the range of 
possible ranking values is [-0.1, 0.9]. Thus 
because there is only a small over lap for these 
extreme points, even if a very low random 
variable is selected, then an individual with a 

small p*
i will have a very low chance of being 

selected. 
 
Ideally the range of possible ranking values should 
be the same, so that for each individual, ri  [a,b], 

with individuals with a low p*
i being clustered 

towards the bottom and those with a high p*
i 

being clustered towards the top. 
 

We now consider an alternative method. This 
method takes a predicted logistic variable: 
 

ii Xp )(logit . 
 

Next, a random number is drawn taken from the 
logistic distribution. This is added to the 
prediction, giving 
 

iip )(logit . 

 
The resulting inverse logit, 
 

)(logit-1 iii Xp  
 

is then used to rank individuals and similarly the 
top x% of households are selected. 

 
The rank produced by the two methods is not the 

same. The second method will be more likely to 
select cases at extreme points than the first, while 
first method will select more points with central 
values of p*

i. 

 
Macro Alignment 
There are a number of levels at which alignment 
can occur. At the lowest level, alignment refers to 
the decision rule used in a discrete choice model. 
The next level, described above in our mortality 

example, which is called the meso-level, concerns 
the idea that the aggregates for particular groups 
(in this case gender and age) should match 
desired external totals. Meso-level alignment and 
the use of alignment as a decision rule can 
however be combined into one stage. 
 

Sometimes the desired targets are narrower than 
the alignment targets we use. Extending our 
mortality alignment example, suppose we align 
mortality by age, gender and occupation. We wish 
to include occupation in the alignment as 
occupational structure is very important for other 
characteristics in the model, and because there 

are known to be significant differentials in 
occupational mortality rates. However if one of the 
core targets in the model is to achieve the 
mortality distribution supplied by external sources 
such as official population projections, which may 
be disaggregated only by age and gender, then 

our meso-alignment may produce different 
aggregates. This will happen if our underlying 
occupation distribution is different to the one 
implicit in the official forecasts. It may therefore 

be desirable to adjust the results again to achieve 
these targets. This process is known as macro 
alignment. Another example follows on from the 

meso-alignment in the simulation of transitions 
between employment states. Macro alignment is 
then used to constrain total employment rates. 
See Appendix 1 for the steps involved in the 
macro alignment process. 
 
Behavioural Change 

Handling behavioural interactions in the model 
resulting from alternative scenarios is another 
issue one needs to consider when deciding on an 
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alignment strategy. 

 
One potential solution is to compare the average 

(pre-alignment) event value, such as the average 
transition rate or average earnings in the baseline 
scenario, with the average in the alternative 
scenario. One potential method is to increase 

alignment values by proportional difference. This 
is a method utilised in some dynamic models.  
However, this approach assumes that all 
processes are unconstrained. In some cases, such 
as mortality rates, this may be a realistic 
assumption. One may expect that an exogenous 
increase in human capital will reduce total 

mortality rates.  In this case shifting down the 
alignment totals is appropriate. 
 
Other processes face market or other institutional 
constraints, issues that are only partially 
simulated in the model. One example involves the 

labour market, where there is a behavioural 

change in labour participation in response to a tax 
change. If labour supply increases, then wages 
would fall and employment increase. This is 
similar to shifting the alignment probabilities. 
However one would have to shift earnings as well. 
Unfortunately, due to rigidities in the labour 

market, this may not necessarily happen. Labour 
demand may be fixed, in which case we may just 
simply see that as more women supply labour, 
they simply replace people in the labour market 
who are less “employable”. This is similar to not 
shifting alignment at all. In cases where there are 
market interactions such as this, it may be useful 

to incorporate a model of the market that would 
inform the response of alignment totals to 
economic and demographic totals.  At present the 
framework makes no explicit incorporation of 

behavioural change in the alignment structure. 
Future work on macro-micro linkages will attempt 
to address this. 

 
 
6. EFFICIENCY 
 
In initial versions of the LIAM framework, 
developments focused on functionality and not 

speed. So for each process the model passed 
through all the objects of the object type, checked 
to see if a condition was true and, if true, 
performed the calculation f(Xß+i) before, if 
necessary, using alignment to produce the 
predicted value of the process. In this section we 
describe a number of improvements in 

computational efficiency, relative to this initial 

approach, that have been made recently. 
 
A first efficiency saving relies on the fact that 
most processes are relatively stable and so do not 
change much year on year. Because of this, 
eligibility conditions are unlikely to change much 

year on year. For example, for lone parent births 
the model used to check to see if an object was 
female, single and of child bearing age. It did this 
for each year and for every person. This is 
inefficient as gender doesn‟t change, so there is 
no need to repeatedly check whether a male can 

have a child. Similarly marital status eligibility 

does not need to be retested annually, given that 
marital status changes only infrequently. In the 

same way, the age range condition (child bearing 
age) only changes twice over a lifetime. A key 
speed improvement, therefore, has been to 
calculate the conditions for all people in the first 

year of the simulation and then only to recalculate 
the condition if an input variable to the condition 
changed. 
 
The same is true when calculating regressions. 
Most regressions are of the form 
 

)(
,

ii
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jij AfXf  

 

Again, by calculating the value of the expression 

in the first year, when Xij changes to Xij* one only 
needs to apply the following transformation 
 

)( *
ijjij ij

XXAf . 

 

The same speed efficiencies can be found for 
transformations, alignment and tabulations. For 
example, when aligning by age-group, sex and 

education level, or creating output tables by these 
components, most of these categories do not 
change much if at all during the simulation. It is 
therefore computationally quite expensive to 
identify, say, all 20-30 year old males with 
university education each period of the simulation 

to perform an alignment. Rather, by computing 
the group membership at the outset and only 
changing group membership when a characteristic 
changes, we significantly reduce the 
computational costs. 
 

These improvements were applied by creating a 

data structure that links every variable to the 
processes which utilise the variable. When the 
value of the variable changes, then the related 
conditions, regressions, transformations etc are 
updated. 
 
The move from periodic simulations to 

initialisation plus simulation only when inputs 
change transfers some of the computing cost from 
the simulation period to the start. Initialisation 
becomes a good deal longer as, rather than 
simulating equations where conditions are met 
(for example, only simulating work equations for 

those who are in-work the previous period), we 
must now simulate all equations (i.e. simulate the 
equations conditional on working and conditional 

on not working in the previous period). On the 
other hand, as all that is being calculated is 
 

ji
jijX

,

, 

 

no alignment needs to occur at this stage.  The 
net result is much less looping through the data 
and significant overall economies of scale. 
 
As development of the program occurred 

incrementally and different versions have been 
run on different machines and with different 
specifications, it has been quite difficult to gauge 
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the impact of the speed improvements. However a 

conservative estimate is that the run time is 10% 
of what it was and potentially as low as 5%. So 

the qualitative conclusion is that the gains are 
highly significant. 
 
Another, although less significant, speed 

improvement was obtained by storing variables in 
a static rather than in a dynamic data structure 
(i.e. as an array rather than a list). As the set of 
variables does not vary within a run of the model, 
there is no gain to using a dynamic list; instead a 
speed penalty is imposed as the list needs to be 
traversed to find a particular variable as opposed 

to simply using the array index to identify the 
variable. 
 
While attention was paid in the original data-
structure to the memory efficiency of the data-
structure by storing only new events, little 

attention was paid to the space taken within this 

structure, which proved very costly. For example 
all incidences of values were stored as doubles or 
real numbers, even though the majority of 
variables were binary variables that could be 
stored as a char. To improve this we introduced a 
new category in the data dictionary which 

specified what type of variable to be used, so that 
binary variables only took up a fraction of the 
space required to store a double. Also we stored 
real and categorical numbers as integers.  Real 
numbers were converted to integers by 
multiplying by 1000 and retaining only the integer 
element of the number.  Integers take half as 

much space as a double. We also conducted an 
audit of the entire data-structure, stripping out as 
much superfluous memory requirements as 
possible. This has been particularly important for 

allowing for much bigger datasets to be simulated 
on a laptop with limited RAM. 
 

Something we have not explored yet is the further 
speed improvement that could be found by 
creating sub-sets of objects associated with each 
condition. At present, the model needs to scroll 
down through the whole dataset for each process. 
If conditions are updated dynamically, then the 

sub-groups where the condition is true can be 
updated dynamically, resulting in calculations only 
taking place on the subset. When the condition 
changes then, this updates the set of objects 
where the condition is true. Therefore in doing 
simulations, the model will only simulate over the 
set of objects eligible to be simulated. 

 

At present all processes are run in series. In other 
words each process is completely simulated before 
moving on to the next process. This requires a 
data pass for each process. This is necessary for 
processes that are aligned as the decision about 
who makes a transition will depend upon all 

objects and not on individual objects. However 
some processes, such as transformations and 
unaligned processes, do not need to be done 
serially. Efficiencies could be gained by simulating 
these processes in parallel. For example, if age is 
simulated for an individual, then age squared and 

age band could be calculated using age as input 

for each individual before continuing on to the 
next individual, cutting the number of data passes 

and improving the speed of the model. Other 
examples include the calculation of durations and 
lagged values of variables. 
 

As always in microsimulation models, there is a 
trade-off between flexibility, complexity and 
performance. Parameterisation may sometimes 
result in enhanced complexity and thus reduced 
transparency and ease of use of the model. In the 
LIAM structure, this has been less of an issue as 
the parameterisation allows for the same code to 

be reused over and over without recoding, so to 
some extent improving the transparency. There 
are, however, some performance overheads noted 
elsewhere in the paper, where the degree of 
parameterisation and generalisation may increase 
the number of operations required and thus 

increase the time to run a simulation. This 

increase must be weighed up against the 
complexity of creating a dynamic model without 
an existing framework. 
 
 
7. IMPLEMENTATIONS OF THE FRAMEWORK 

 
In this section we describe a number of 
implementations of the LIAM framework. Thus far 
there have been four implementations of the 
model 
a. Life-cycle redistribution in the Irish Tax-

Benefit system - Irish Dynamic Cohort 

Microsimulation Model 
b. Redistributive impact of Indirect Taxes in 

Europe – dynamic microsimulation of 
expenditures in the EUROMOD framework. 

c. Spatial Policy Analyses – Simulation Model of 
the Irish Local Economy (SMILE) 

d. Cross-national comparisons of the 

distributional impact of pensions and the 
incentive to retire – multi-country dynamic 
microsimulation model – EU 6th Framework 
project, Old Age Income Maintenance Policies 
(AIM). 

 

Model (a) was the basis of the author‟s PhD and 
has been used to examine the life-course 
redistributive impact of the Irish Tax-Benefit 
System (O‟Donoghue, 2002) and the redistributive 
impact of pension reform (O‟Donoghue, 2005). 
The implementation was a single cohort model 
taking 1000 people aged 0 and simulating their 

entire life-history before linking with the 

EUROMOD tax-benefit model to simulate the tax-
benefit system. A feedback loop was used to 
incorporate the impact of tax-benefit policy on 
labour supply decisions. 
 
While model (a) utilised an external tax-benefit 

microsimulation model to provide tax-benefit 
simulations for use in the dynamic 
microsimulation model, model (b) takes inputs 
from the dynamic microsimulation framework into 
a static tax-benefit model. As part of the EU tax-
benefit model EUROMOD, there was a desire to 
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examine the impact of indirect taxation on 

redistribution (O‟Donoghue et al., 2004). 
However, most of the databases used as inputs 

into the model did not contain expenditure 
information. The LIAM framework was used to 
simulate a system of equations simulating total 
expenditure and budget shares of twenty groups 

of goods on the basis of information contained in 
the income surveys used in the model. Indirect 
taxes were then simulated using the EUROMOD 
framework. This model used datasets of up to 
50,000 households simulating indirect taxes for 
one fiscal year. 
 

In recent years parallel microsimulation modelling 
has been used for geographical and spatial 
analysis (See Clarke, 1996 and Holm et al, 1996). 
Since 2002, a team comprising the University of 
Leeds, the National University of Ireland Galway 
and Teagasc have been developing model (c), the 

Simulation Model of the Irish Local Economy 

(SMILE), using the LIAM framework with the 
principle objective of carrying out spatial analysis 
in Ireland (O‟Donoghue et al., 2005). Examples 
include modelling the impact of local area 
demographic changes on welfare, modelling the 
spatial impact of rural policy reforms, identifying 

agri-tourism hotspots.  A future goal is to model 
the spatial behavioural impact of public 
infrastructure developments such as road building 
programs. The first component of the model is 
developed outside the framework, requiring the 
statistical matching of individual tabular local area 
census information with micro-level household 

data to produce the base dataset. This is done 
using a statistical matching algorithm. The LIAM 
framework is used to simulate typical dynamic 
microsimulation variables such as demographic 

and labour market variables. Particular 
advancements from this model include regional 
labour markets, micro-farm level production 

functions and spatial behavioural models. The 
model is currently under development. At present 
it is split into around 30 county models of about 
70,000 persons each and simulates spatial-based 
policy at the local level. 
 

The fourth implementation of LIAM, also in 
development, is being used to carry out cross-
national comparisons of the distributional impact 
of pensions in a selection of countries in the EU 
(Belgium, Germany, Ireland, Italy and Sweden). 
In addition a comparative analysis will be carried 
using a semi-structural retirement decision 

module based upon discounted income and 

pension wealth streams. This model simulates 
over the 50 year horizon 2000-2050, using cross-
sections of about 10-15,000 individuals. 
 
 
8. CONCLUSIONS 

 
While there have been substantial numbers of 
papers describing analyses carried out by models 
developed using LIAM, relatively little has been 
written on the technical development of the 
models. In this paper we have discussed some of 

the methodological innovations underpinning the 

LIAM dynamic microsimulation framework. 
 

The key feature of LIAM is the extensive use of 
parameterisation. Parameterisation of the main 
features of the dynamic model allows for the 
programme code which runs transitions, 

alignment and transformations to be reused for 
different purposes.  When adding new variables to 
the model, alterations need to be made only in 
one place, in a parameter file, making the model 
easier to change and reducing the possibility of 
error. This aids model flexibility, as code does not 
need to be reprogrammed when parameters 

change. This in turn improves the durability of 
models developed using LIAM, as it allows new 
parameters to be included when better 
information becomes available. This is perhaps the 
most important feature of the LIAM, allowing the 
framework to be used to develop model 

applications for a wide variety of purposes. It also 

allows for ease of expansion as improved data and 
micro-behaviour become available. In addition, by 
defining the data structure outside the model, in a 
parameter file, model transparency and 
robustness is improved. 
 

A second key feature of LIAM is modularisation. 
Six generic module types have been identified and 
developed, which between them are designed to 
cover the full range of model functionality required 
in a dynamic microsimulation model.  Because 
these modules are fully parameterised, in LIAM 
one can declare a new module by simply taking an 

existing module as a template and changing the 
parameters as required. Similarly, because 
module run-order and type is parameterised, the 
model can handle any number of modules in any 

order without the need for extra programming, 
provided the functionality of the new module 
maps onto one of the existing generic module 

types.  New modules can be added to a model 
without affecting its integrity as, in LIAM, all 
modules are designed to work independently of 
each other.  This further adds to the robustness of 
the model. Also, by allowing the user to focus on 
small sections of code at time, modularisation 

improves the transparency of the model. 
 
The third aspect of LIAM highlighted in this paper 
is its handling of alignment.  As well reviewing the 
rationale for alignment, we have set out the 
circumstances in which the use of generic or event 
specific functions are most appropriate for the 

implementation of alignment.  We have also set 

out in detail the process required to align 
aggregate outcomes to the proportion or number 
of objects in, or moving between, given states, 
including consideration of hierarchical 
(meso/macro) alignment. 
 

The final aspect of LIAM highlighted in this paper 
is the range of efficiency improvements, in both 
speed and memory usage, that have been 
implemented as a result of lessons learnt whilst 
developing the framework. The main improvement 
has been move from the evaluation of functions 
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on a universal, periodic, basis, to an initial 

universal evaluation followed by reevaluation only 
for those objects to whom the function applies, 

and for whom values in relevant elements of their 
attribute set have changed.  Secondary 
improvements have been linked to more efficient 
data storage, including the conversion of all data, 

including floating point data, to integer format. 
 
We do not claim that LIAM is either the fastest or 
most efficient dynamic microsimulation model 
currently in use.  But unfortunately the 
methodological underpinnings of many models 
remain undocumented or are set out only in in-

house documentation.  In this paper we have 
attempted to publicly document some of the 
issues that have arisen in the creation of the LIAM 
framework, with the hope that other model 
builders can learn from our experiences. Although 
the framework is not an attempt at writing a 

microsimulation programming language, it has 

allowed for a variety of different applications to be 
constructed without the need for extensive 
recoding. In addition, as we have shown, it has 
been possible to use this framework as a template 
for other dynamic models, because the model 
itself is entirely independent of data and 

behavioural equations to be used.  To promote 
collaboration and further development, LIAM is 
available to researchers on request. 
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Appendix 1 Macro alignment in LIAM 
 
In LIAM, macro alignment occurs as follows: 

 
1. Specify alignment sheets, that need to be the 

same shape for each process (but macro can 
be a subset), as does the predictor 

 

2. Create a temporary set of alignment 

structures of type talign (= n+1, where n is 
the number of processes to be macro aligned - 

structure (0) is to store the macro level) 
 
3. For each sub process, run through conditions 

and count the number of people (level.nPer) 

who meet conditions who are in each 
alignment cell (we don't store predicted 
probability at this point as we don't know it - 
maybe simply assign zero and use the existing 
code) 

 
4. For macro process, do the same 

 
5. Multiply the cell p times the number in cell N 

= np, the number to be selected in cell 
 

6. If the sub-processes are more disaggregated 
than the macro level, collapse to the lower 

level by summing N over the higher level (ie 

across education levels) 
 
7. Now we have the N's for the 2 dimensional 

table for macro and each sub-process. Sum 
over sub-processes to get expected overall 
N_t and compare with the Macro N_m 

 
8. To adjust multiply the highest level of the 

macro sheet (in this case level 2) in each of 
the sub-process by N_m/N_t 

 
9. Backup original Alignment numbers (to be 

used in the following year) 

 
10. Store new Alignment totals in the sub-process 

alignment structures 


