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ABSTRACT: This paper describes a strategy for estimating predictive equations that has been 
shown to work well in microsimulation modelling.  The technique, referred to here as ―age-centred 
regression,‖ is particularly useful when the available data set for estimating a model equation is 
limited and the marginal effect of one or more explanatory variables might be expected to vary 
systematically by age.  The examples used here to describe how age-centring works are taken 

from the labour supply equations in the Congressional Budget Office Long-Term (CBOLT) dynamic 
microsimulation model.  By switching from a traditional single-equation approach to age-centred 
regression, we show that marginal effects of independent variables can vary significantly across 
age groups.  The comparison also reveals that improvements in mean predictions by age can be 

achieved with little if any loss in statistical precision of coefficient estimates. 
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1. INTRODUCTION 
 
A fundamental goal of microsimulation 
modelling is to replicate empirically observed 

heterogeneity in person-, household-, or firm-
level outcomes.  If individuals with certain 
characteristics are more likely to have certain 
outcomes, a good model will have transition 
equations that generate those correlations in 
simulations.  Sample size limitations in the 
data sets used to estimate model equations 

can make achieving this goal a challenge, 

however, as they make it difficult to 
statistically sort out all of the covariance 
needed to replicate the desired heterogeneity. 
This paper discusses an estimation strategy, 
referred to as ―age-centred regression‖, that 

has proved useful for mitigating the types of 
problems in microsimulation that are typically 
associated with small sample sizes. 
  
There are several conditions under which age-
centred regression might be useful in 
microsimulation modelling.  First, the 

behavioural processes being estimated vary 
systematically with age: these processes 
include marital status transitions, fertility, 
mortality, and labour market outcomes. 
Second, these processes are such that the 

effect of any given explanatory variable could 
also vary by age: for example, higher 

educational attainment might lower the 
probability of marriage for very young singles, 
but increase the probability of marriage for 
middle-aged singles. Third, the data set 
available for estimating the model equation is 
limited, so that estimating separate equations 

for each age is infeasible and therefore some 
sort of grouping is required. 

A typical approach in microsimulation when 
these conditions arise is to estimate separate 
equations for two or more age groups.  For 
instance, in the marital transition equation, 

one might estimate separate marriage 
probability equations for young, middle-aged, 
and perhaps older individuals, so that the 
model would have three marriage equations.  
Age centring takes this grouping approach a 
step further.  The idea is to estimate a 
separate equation for each unique (or 

―reference‖) age, but include every observation 

in the sample whose age is within a preset 
range (or ―bandwidth‖) around the reference 
age being estimated.  Thus, if the sample 
being analyzed is 25-year-olds and the 
bandwidth is 4 years, the estimation phase 

would use all observations in the data set with 
ages 21 through 29.  The equation for 26-
year-olds would use every observation with 
ages 22 to 30, and so on.  The end result is 
that the model will have separate equations for 
each reference age, but the sample used to 
estimate the equation for any given age 

overlaps with the data used to estimate nearby 
ages. 
  
There are two benefits when using age-centred 
regressions, in terms of econometric flexibility.  

First, there is flexibility in the shape of the 
functional form with respect to age itself—one 

does not have to rely on polynomial terms or 
linear splines to specify how the process in 
question varies with age.  Second, the effect of 
any given independent variable in the equation 
is no longer constrained to be equal for all age 
groups (or even a subset of age groups, as 

when one splits the sample).  If the data 
suggest that the magnitude or even sign of an 
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explanatory variable systematically varies with 
age, the differential relationship will show up in 

the estimates. 
 

The examples used here to illustrate the age-
centring approach are taken from the labour 
force modules in the U.S. Congressional 
Budget Office Long-Term dynamic 
microsimulation, also known as CBOLT.1  The 
equations we consider sequentially predict 
labour force participation, full-time versus 

part-time employment, and hours worked for 
part-time employed persons.  All of the 
equations are univariate or multinomial logit 
specifications with standard controls: the 
explanatory variables include age, marital 
status, educational attainment, in-school 

status, number of children under 6 years of 
age (for women), receipt of social insurance 

benefits, and cohort/time effects.  The 
equations are all estimated using about thirty 
years of data from the March Current 
Population Survey (CPS), which is a large, 
annual, nationally representative cross-section.  

 
For each of the three labour market equations, 
we compare the results using a standard 
(linear in age) specification with age-centred 
results.  We show that estimated coefficients in 
the age-centred equations do vary 
systematically by age, and those differences in 

coefficients imply very different marginal 
effects by age.  One example is the extent to 
which lagged labour force participation is 
correlated with current labour force 
participation; the effect varies systematically 

over the life cycle and the age-centred 

equation is better able to capture that pattern 
than the more standard equation.  A second 
example is the effect of marital status on 
expected part-time hours (conditional on 
working part-time).  The extent to which being 
married affects part-time hours worked also 
varies significantly across age groups.  

 
A further benefit of using the age-centred 
approach in microsimulation modelling is that, 
by its nature, age-centred regressions are 
better at capturing any differences in mean 
predicted outcomes by age.  In general, 
microsimulation modellers rely on the fact that 

the single equation approach will work if the 
underlying outcomes by age are smooth and if 

one uses an appropriate polynomial in age.  
Using the predictions from the labour force 
module, we show that deviating from those 
conditions can lead to biased predictions by 

age in some cases. 
 
2. THE MECHANICS OF AGE-CENTRED 
REGRESSION 
 
Age-centred regression is useful for estimating 

microsimulation model equations in cases 
where the underlying process varies 

systematically by age and one is trying to 
achieve maximum flexibility in the estimated 

econometric relationships.  In microsimulation 
modelling, researchers typically split the 
sample by age when estimating equations, 
although it is well understood that the effect of 
certain independent variables differs across 
age groups.  Age-centred regression takes this 
logic a step further by estimating different 

equations for each unique ―reference‖ age.  
Estimating the equation for each age, however, 
limits the regression sample and reduces the 
statistical precision of the estimation.  In order 
to overcome the small-sample-size problem, 
age-centred regression borrows a principle 

from kernel density analysis and includes all 
observations that are within a certain 

―bandwidth‖ of the reference age group in 
question.  The technique allows statistical 
precision to be maintained at the same time 
that improved flexibility in estimated 
coefficients by age is achieved.  

 
For any given bandwidth, the actual estimation 
strategy for an age-centred regression is 
straightforward.  Assume the equation being 
estimated is for a reference group that is 25 
years old and the bandwidth is set to five 
years.  The equation estimation will include 

every observation in the data set with ages 20 
through 30.  However, the observations are 
not weighted equally. As in kernel density 
estimation, declining weights are applied to 
observations that are farther from the 

reference age group.  A simple triangular 

weighting pattern is used, so if the reference 
group is 25-year-olds with a 5-year bandwidth, 
then 25-year-olds have weights of one, 
persons who are one year plus or minus 25 
(24- and 26-year-olds) have weights of 0.8, 
persons who are two years plus or minus 25 
(23- and 27-year-olds) have weights of 0.6, 

persons three years plus or minus 25 (22- and 
28-year-olds) have weights of 0.4, persons 
four years plus or minus 25 (21- and 29-year-
olds) have weights of 0.2, and persons five 
years plus or minus 25 (20- and 30-year-olds) 
have weights of 0.0.  
 

The decision about how wide a bandwidth to 
use when estimating an age-centred 

regression will depend on the tradeoff between 
desired flexibility and statistical precision.  If 
the bandwidth is set low (with bandwidth one, 
the only observations included are in the 

reference group itself) the estimation process 
has the most possible flexibility.  There is no 
smoothing of the estimated effect of 
independent variables across ages; therefore, 
if people of different ages are really very 
different in terms of mean outcomes or the 



SABELHAUS AND WALKER     Econometric flexibility: an age-centred regression approach 3 

 

effects of some independent variable, those 
differences will come through in the 

estimation.  The tradeoff is the loss of 
statistical precision when the bandwidth is set 

too low; there may be too few observations 
exactly at or near some ages and one cannot 
estimate the coefficients of interest with any 
reliability.  
 
The approach in kernel density estimation is to 
explicitly test for optimal bandwidth, but the 

decision on bandwidth ultimately depends on 
how much weight one puts, ex ante, on 
flexibility versus statistical precision.2  In the 
examples here (and other equations in the 
CBOLT dynamic microsimulation model) the 
bandwidth is set to five years, which balances 

the goals of flexibility and precision in these 
types of equations.  The five-year bandwidth is 

large enough that the coefficients are precisely 
estimated, with significance levels on most 
coefficients that are comparable to those from 
the standard single equations using the entire 
data set.  At the same time, the five-year 

bandwidths are small enough that one can 
observe any systematic differences in 
estimates across the age distribution.  
Capturing these differences will improve the 
capacity of the microsimulation model to 
reflect the heterogeneity in the underlying 
data.  

 
There are a few mechanical observations about 
using age-centred regression worth noting.  
First, in the estimates discussed in this paper 
(see Section 3), all of the age-centred 

equations include an age term as well as an 

intercept.  Note that if the bandwidth is set to 
one, the intercept and age will be perfectly 
correlated.  However, when the bandwidth is 
greater than one, the age term can be 
estimated and captures any systematic age 
differences (within the bandwidth range) not 
captured by other independent variables.  It is 

probably easiest to think of this coefficient as 
the derivative by age of the process being 
estimated, evaluated at that particular 
reference age.  In model simulations, when 
predicting outcomes for a given observation, 
the age term is effectively combined with the 
constant term for each reference age group.3  

 
A second mechanical observation concerns how 

one actually estimates and uses age-centred 
regressions.  At first glance it might seem that 
age centring is somewhat more cumbersome, 
because it replaces one equation for the entire 

population with separate equations for each 
age group.  However, in practice the actual 
estimation and implementation are both 
straightforward.  The equations here are all 
estimated using a simple looping feature in a 
standard software package, so the actual code 

for estimating, evaluating, and outputting 
multiple equations is only slightly more 

cumbersome than estimating a single 
equation.  (See example code in appendix.)  In 

the actual CBOLT model code, switching from a 
single equation to age-centred equations 
simply involves adding an extra dimension 
(age) in the coefficient arrays used in the 
simulation.  In sum, the benefits of adopting 
age centring exceed any computational 
burdens the technique introduces. 

 
3. AGE CENTRING IN THE CBOLT LABOUR 
FORCE EQUATIONS 
 
The overarching goal of CBOLT is the same as 
many other dynamic microsimulation models: 

to simulate demographic, labour market, and 
government tax/transfer outcomes for a 

representative sample of the population 
forward through time.  Although age centring 
is used in several CBOLT equations, for 
reasons of brevity the analysis in this paper is 
focused on the labour force participation and 

hours worked equations in the CBOLT labour 
force module.  The approach used here to 
demonstrate age centring is to compare and 
contrast age-centred results with a more 
standard single-equation approach for each of 
the three equations in the CBOLT labour 
market module.4   

 
CBOLT labour force equations 
In CBOLT, annual hours worked for each 
individual are estimated using a sequence of 
three equations.  For each individual, the 

model solves for (1) labour force participation, 

(2) full-time versus part-time work for those in 
the labour force, and (3) part-time hours 
worked for those who work part-time.  The 
first two equations are univariate logits, and 
the resulting probability is compared to a 
random number draw to determine the actual 
model outcome.  The third equation is a 

multinomial logit with seven possible outcomes 
(or ―bins‖) for annual part-time hours 
outcomes.5  As with the first two equations, a 
random number draw is used to place 
individuals into each of the seven annual part-
time bins.  
 

Each of the three equations in the labour force 
module is estimated separately for men and 

women.  The explanatory variables used in the 
CBOLT labour force equations include age, 
marital status, educational attainment, in-
school status, number of children under 6 

years of age (for women), receipt of social 
insurance benefits, and cohort/time effects.6  
The labour force participation equation also 
includes a lagged independent variable in order 
to capture the observed persistence in the 
data.7  
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The three CBOLT labour force equations are 
estimated using pooled Current Population 

Survey (CPS) data.  The March CPS collects 
information on about 60,000 households each 

year.  The data sets are cross-sectional and 
contain a wide variety of economic and 
demographic information on the individual, 
family, and household.  The data used to 
estimate the equations in the labour force 
module are for calendar years 1975 through 
2003.  In the equations discussed here, the 

sample is restricted to individuals ages 25 
through 61, which includes nearly 1 million 
observations over the 29 year period.8  
 
The CBOLT approach to estimating annual 
hours worked may seem overly complicated — 

one could use a single equation that directly 
predicts annual hours worked — but there are 

good reasons to separate the process into the 
three steps.  Because each process has 
different dynamics and marginal impacts from 
changing independent variables, separately 
identifying each equation improves the 

simulations of actual population heterogeneity.  
Also, separating the module into these three 
logical steps makes it easier to build in other 
features of labour market outcomes.  For 
example, unemployment incidence and spell 
lengths differ for part- and full-time workers.  
The CBOLT approach also makes it feasible to 

introduce behavioural responses into the 
model. In particular, retirement in CBOLT is 
modelled as a decision to start collecting Social 
Security, which does not necessarily end 
labour market activity — it just changes the 

intensity.9,10 

 
Estimated coefficients in single-equation 
and age-centred regressions  
In order to draw out how age-centred 
regression differs from traditional single-
equation estimates we compare versions of 
each labour force equation, estimated using 

the same data set for the same time period.  
Table 1 shows six sets of single-equation 
estimates, three each for men and women.  
For each sex group, the first column shows 
estimated coefficients for the labour force 
participation equation, the second column for 
the full-time work equation, and the third 

column for part-time hours worked.11  
 

The signs of the coefficients in Table 1 make 
sense, and most of the parameters of interest 
are significant at the 1 percent level.  In 
general, more education is associated with 

higher labour supply for both men and women, 
while marriage is associated with higher labour 
supply for men but lower labour supply for 
women.  Receipt of Social Security income has 
a strong negative effect on labour supply for 

both men and women.  The most dominant 
effect in the labour force participation equation 

is from lagged labour force participation, which 
we focus on below when computing marginal 

effects.  This coefficient shows that persistence 
in labour supply within the population is a first-
order effect that should be accounted for, 
clearly dominating the magnitude of the other 
zero-one dummy variables.  
 
The CBOLT age-centred versions are shown for 

two reference ages (age 30 and 55) in Table 
2a (for men) and Table 2b (for women).12  The 
first observation about Tables 2a and 2b is that 
the estimated coefficients often vary 
significantly between the two age samples.  
For example, the coefficient on lagged labour 

force participation for 55-year-olds is about 30 
percent higher than the coefficient for 30-year-

olds, and that holds for both men and women.  
What that suggests is that persistence in 
labour supply is much stronger at age 55 than 
it is at age 30, everything else constant.   
 

The estimated coefficients for the 30- and 55-
year-old reference age samples diverge from 
the single-equation estimates to varying 
degrees across independent variables and 
equations, but the presumption that using age 
centring can reveal differences in estimated 
effects by age is clearly borne out in Tables 2a 

and 2b.  It is worth noting that single-equation 
parameter estimates (in Table 1) generally fall 
in the range spanned by the age-centred 
estimates in Tables 2a and 2b, which is 
expected given the way the data are used to 

estimate the equations.  Finally, there also 

appears to be no significant loss of statistical 
precision when shifting to age centring in these 
equations.  Almost every variable that is 
significant in Table 1 remains so in Tables 2a 
and 2b. 
 
Differences in marginal effects by age 

Differences in estimated coefficients across age 
groups are one way to show how age centring 
can affect predicted outcomes, but a better 
way to see the implications for model 
simulations is to compute marginal effects.  
The marginal effect of a given independent 
variable is computed by applying the estimated 

equation coefficients within-sample.  The value 
of the independent variable being investigated 

is varied and the difference in the 
corresponding predicted outcomes is the 
marginal effect.  
 

The first set of marginal effects computed for 
the CBOLT labour force equations applies to 
the lagged dependent variable in the labour 
force participation equations.  For each person 
computed using the estimated coefficients, 
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Table 1 Regression results using single equation with linear age term, men and women 
 Men  Women 

Covariate Pr(LFP=1) Pr(FT=1) PT Hours  Pr(LFP=1) Pr(FT=1) PT Hours 

Lagged Labour Force  
    Participation 

   4.082       4.361   

 (0.012)**     (0.008)**   

Married   0.166    0.822    0.236   -0.525  -0.708  -0.371 

  (0.012)**  (0.009)**  (0.015)**   (0.009)**  (0.006)**  (0.010)** 

Age of Person  -0.021  -0.002  -0.011   -0.004    0.012    0.013 

  (0.001)**  (0.001)**  (0.001)**   (0.001)**  (0.000)**  (0.001)** 

Receiving Social  
    Security Income 

 -2.081  -2.243  -1.218   -1.085  -1.110  -0.606 

 (0.026)**  (0.035)**  (0.042)**   (0.020)**  (0.022)**  (0.025)** 

High School Education    0.111    0.552    0.111     0.398    0.299  0.101 

  (0.015)**  (0.012)**  (0.019)**   (0.011)**  (0.009)**  (0.012)** 

Some College  

    Education 

 -0.049    0.491  -0.074     0.482    0.325    0.093 

 (0.017)**  (0.013)**  (0.022)**   (0.013)**  (0.010)**  (0.014)** 

College Education    0.241    0.646  -0.116     0.637    0.490    0.071 

  (0.016)**  (0.013)**  (0.021)**   (0.013)**  (0.010)**  (0.014)** 

Number of Children  
    Under 6 Years 

     -0.481  -0.516  -0.299 

     (0.008)**  (0.006)**  (0.007)** 

Birth Year: 1920-1929    0.208    0.129    0.074     0.175    0.078    0.055 

  (0.042)**  (0.041)**  (0.066)   (0.032)**  (0.033)*  (0.045) 

Birth Year: 1930-1939    0.376    0.202    0.073     0.422    0.157    0.185 

  (0.041)**  (0.041)**  (0.064)   (0.032)**  (0.033)**  (0.044)** 

Birth Year: 1940-1949    0.392    0.331    0.178     0.64    0.347    0.337 

  (0.042)**  (0.042)**  (0.065)**   (0.032)**  (0.033)**  (0.044)** 

Birth Year: 1950-1959    0.341    0.293    0.151     0.831    0.543    0.547 

  (0.043)**  (0.042)**  (0.068)*   (0.034)**  (0.033)**  (0.045)** 

Birth Year: 1960-1969    0.147    0.266    0.068     0.863    0.700    0.660 

  (0.046)**  (0.044)**  (0.070)   (0.035)**  (0.034)**  (0.046)** 

Birth Year: 1970-1979  -0.001    0.115    0.002     0.744    0.732    0.711 

  (0.052)  (0.047)*  (0.074)   (0.040)**  (0.036)**  (0.049)** 

Constant  -0.443    1.125    -2.169    0.152  

  (0.063)**  (0.056)**    (0.048)**  (0.041)**  

Observations 1,034,541 944,231 86,049  1,113,085 782,972 254,685 

Notes: (i) Models denoted by Pr(LFP=1) – labour force participation; Pr(FT=1) –full-time or part-time work; PT 
Hours –part-time hours for those working part-time. (ii) Robust standard errors italicised and in parentheses; * 
significant at 5%; ** significant at 1%. 

 

 
with all independent variables set to actual 
values except lagged labour force participation.  
In the first set of calculations, the value of 
lagged labour force participation is set to zero 
(no work in the previous period) for every 
observation and the mean predicted labour 

force participation probability by age is 
computed.  In the second set of calculations, 
the value of lagged labour force participation is 
set to one for every observation, and again the 

mean participation probability by age is 
computed.  Because lagged labour force 

participation has a positive effect on current-
year participation, the second set of mean 
probabilities is higher at every age.  The 
marginal effect of lagged labour force 
participation is the gap between these two sets 
of mean probabilities. 
 

Figure 1 shows four sets of marginal effects for 

lagged labour force participation.  There is one 
set each for men and women and for the two 
equations (single-equation and age-centred).  
For both men and women, the marginal effects 
in the single-equation estimates show much 
less variation by age than in the age-centred 

regressions.  This makes sense because the 
single-equation estimate provides the 
weighted-average marginal effect of lagged 
labour force participation across the age 

distribution.  Indeed, the only variation by age 
in marginal effects is associated with 

underlying variation in the other independent 
variables in the data set; there is only one 
coefficient on lagged labour force participation 
that applies to every age group, so the range 
of marginal effects is limited. 
 
The variation in marginal effects by age is 

much more pronounced in the age-centred
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Table 2(a)  Regression results using age centring, men ages 30 and 55 

 Men, Age 30  Men, Age 55 

Covariate Pr(LFP=1) Pr(FT=1) PT Hours  Pr(LFP=1) Pr(FT=1) PT Hours 

Lagged Labour Force  
    Participation 

   3.451       4.594   

 (0.022)**     (0.025)**   

Married  -0.043    0.793    0.226     0.335    0.562    0.091 

  (0.018)*  (0.014)**  (0.024)**   (0.028)**  (0.022)**  (0.036)* 

Age of Person    0.046    0.064    0.028   -0.123  -0.089  -0.062 

  (0.004)**  (0.003)**  (0.005)**   (0.005)**  (0.004)**  (0.006)** 

Receiving Social  
    Security Income 

 -1.687  -1.905  -1.211   -2.293  -2.555  -1.248 

 (0.052)**  (0.075)**  (0.090)**   (0.050)**  (0.067)**  (0.068)** 

High School Education  -0.088    0.617    0.230     0.152    0.360    0.012 

  (0.026)**  (0.021)**  (0.034)**   (0.030)**  (0.024)**  (0.039) 

Some College  
    Education 

 -0.364    0.475  -0.060     0.123    0.371  -0.078 

 (0.028)**  (0.022)**  (0.036)**   (0.037)**  (0.029)**  (0.047) 

College Education  -0.043    0.536    -0.248     0.464    0.580    0.047 

  (0.028)  (0.022)**  (0.035)   (0.035)  (0.027)**  (0.046) 

        

Birth Year: 1920-1929      -0.065  -0.180  -0.169 

      (0.081)  (0.067)**  (0.103) 

Birth Year: 1930-1939      -0.133  -0.382  -0.291 

      (0.082)  (0.067)**  (0.104)** 

Birth Year: 1940-1949      -0.277  -0.388  -0.295 

      (0.082)**  (0.068)**  (0.105)** 

Birth Year: 1950-1959    0.011  -0.124  -0.008   -0.365  -0.289  -0.232 

  (0.030)  (0.025)**  (0.041)   (0.098)**  (0.080)**  (0.126) 

Birth Year: 1960-1969  -0.025  -0.058  -0.044     

  (0.030)  (0.025)*  (0.042)     

Birth Year: 1970-1979  -0.001    0.009  -0.035     

  (0.034)  (0.028)  (0.047)     

Constant  -1.578  -0.549      5.136    6.613  

  (0.117)**  (0.094)**    (0.302)**  (0.239)**  

Observations 308,015 290,385 29,024  188,934 160,656 16,547 

Notes: (i) Models denoted by Pr(LFP=1) – labour force participation; Pr(FT=1) –full-time or part-time work; PT 
Hours –part-time hours for those working part-time. (ii) Robust standard errors italicised and in parentheses; * 
significant at 5%; ** significant at 1%. 
 
 

regressions, which is consistent with 
observations about the estimated coefficients 
by age made in the previous section.  The 
coefficient on lagged labour force participation 
rises systematically by age in the age-centred 
regressions for both men and women, and this 

rise is reflected in significant increases in 
marginal effects as age increases.  The fact 
that both age-centred marginal effects lines 
cross their respective single-equation lines is 
also consistent with the observations made 

about the coefficients in Tables 1 and 2a, 2b.  
 

These observed differences in estimated 
marginal effects could be of first-order 
importance in the microsimulation.  The lagged 
labour force participation coefficient is a key to 
establishing longitudinal persistence in labour 
force participation within the micro sample, 

and in a single-equation model that coefficient 

is biased down for workers nearing retirement.  
One often-used technique in microsimulation 
— calibration factors by age — could be used 
to match predicted outcomes by age, but 
unless one addresses the underlying cause of 
the bias calibration will not fix the problems 

with the equation.  
 
A second comparison of estimated marginal 
effects using single-equation estimates and 
age-centred regression leads to the same basic 

conclusion.  Figure 2 shows the marginal effect 
of being married on part-time hours worked 

(conditional on working part-time).  In this 
case, the marginal effect of being married for 
both men and women is fairly similar between 
the age-centred and single-equation estimates, 
with the notable exception of the youngest and 
oldest age ranges, where the bias is 

noticeable.
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Table 2(b) Regression results using age centring, women ages 30 and 55 
 Women, Age 30  Women, Age 55 

Covariate Pr(LFP=1) Pr(FT=1) PT Hours  Pr(LFP=1) Pr(FT=1) PT Hours 

Lagged Labour Force  
    Participation 

   3.717       5.028   

 (0.013)**     (0.020)**   

Married  -0.534  -0.547  -0.306   -0.535  -0.780  -0.413 

  (0.015)**  (0.011)**  (0.016)**   (0.022)**  (0.016)**  (0.024)** 

Age of Person    0.029    0.001    0.007   -0.061  -0.020  -0.017 

  (0.003)**  (0.002)  (0.003)*   (0.004)**  (0.003)**  (0.004)** 

Receiving Social  
    Security Income 

 -0.882  -0.794  -0.515   -1.110  -1.368  -0.718 

 (0.044)**  (0.050)**  (0.054)**   (0.047)**  (0.050)**  (0.050)** 

High School Education    0.436    0.398    0.107     0.373    0.272    0.076 

  (0.019)**  (0.018)**  (0.023)**   (0.024)**  (0.019)**  (0.026)** 

Some College  

    Education 

   0.526    0.454    0.132     0.425    0.290    0.047 

 (0.021)**  (0.019)**  (0.024)**   (0.031)**  (0.022)**  (0.032) 

College Education    0.700    0.731    0.166      0.598    0.403    0.066 

  (0.021)**  (0.019)**  (0.024)**   (0.033)**  (0.023)**  (0.034) 

Number of Children  
    Under 6 Years 

 -0.435  -0.584  -0.309   -0.209  -0.201  -0.201 

 (0.008)**  (0.007)**  (0.009)**   (0.084)  (0.060)**  (0.085)* 

Birth Year: 1920-1929      -0.054  -0.094  -0.034 

      (0.062)  (0.054)  (0.074) 

Birth Year: 1930-1939        0.096  -0.095    0.084 

      (0.063)  (0.054)  (0.075) 

Birth Year: 1940-1949        0.220    0.135    0.220 

      (0.063)**  (0.055)*  (0.075)** 

Birth Year: 1950-1959    0.299    0.255    0.293     0.342    0.244    0.351 

  (0.020)**  (0.016)**  (0.022)**   (0.076)**  (0.062)**  (0.086)** 

Birth Year: 1960-1969    0.409    0.449    0.455     

  (0.021)**  (0.017)**  (0.023)**     

Birth Year: 1970-1979    0.393    0.499    0.510     

  (0.024)**  (0.019)**  (0.027)**     

Constant  -2.408    0.530      0.855    2.184  

  (0.086)**  (0.067)**    (0.247)**  (0.178)**  

Observations 330,794 239,891 81,777  205,062 127,326 40,052 

Notes: (i) Models denoted by Pr(LFP=1) – labour force participation; Pr(FT=1) –full-time or part-time work; PT 
Hours –part-time hours for those working part-time. (ii) Robust standard errors italicised and in parentheses; * 
significant at 5%; ** significant at 1%. 

 

 
Differences in mean predicted outcomes 
by age 
In addition to eliminating bias by age in 
estimated marginal effects, age centring can 
also improve the mean predicted outcomes by 
age in the microsimulation.  The examples 

used here to draw out this point are somewhat 
contrived, because we estimate the single-
equation versions using only a linear age term.  
In many applications, microsimulation 

modellers will examine patterns by age for the 
types of processes we are considering and 

estimate higher-order age polynomials.  
 
Figure 3 shows the mean probability of 
working by age for men and women, evaluated 
within-sample using the single-equation and 
age-centred regression approaches.  Both 
equations clearly capture the concave shape in 

labour force participation between ages 25 and 

61.  The age-centred predictions will, by virtue 
of maximum likelihood principles, more closely 
track the actual patterns of labour force 
participation by age, so we can characterize 
the deviation of the single-equation from the 
age-centred line as bias.  Although the 

deviation is not too extreme, it is 
systematically biased upwards for women.  For 
men, the single-equation estimate is biased up 
for young workers and biased down for older 

workers, in generally the same direction of 
bias as the marginal effects of lagged labour 

force participation noted above.  Adding 
higher-order age terms to the equation may 
help the single-equation track better, but it is 
unlikely to eliminate the bias. 
 
Figure 4 shows the mean of part-time hours 
conditional on working part-time, and for these 

outcomes the bias is even stronger.  The effect 
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Figure 1 marginal effect of lagged LFP on labour force participation comparing single-equation and 
age-centred regressions men and women, ages 25-61 
 
 
 

 
Figure 2 Marginal effect of being married on part-time hours worked comparing single-equation 
and age-centred regressions men and women, ages 25-61 

 
 

of imposing a linear coefficient on age comes 

through clearly for men, as the functional form 
induces a predicted relationship with age that 
is linear.  As with labour force participation, 
the higher-order age-terms could improve 
predicted outcomes but the predictions will 
only asymptotically approach the age-centred 

values as higher-order terms are added. 
 

4. CONCLUSIONS 

 
The technique described here as ―age-centred 
regression‖ analysis is a useful way to extract 
information from a limited data set when 
estimating equations for dynamic 
microsimulation models.  The situation in 

which age centring can help is very common:
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Figure 3 Mean predicted labour force participation comparing single-equation and age-centred 

regressions men and women, ages 25-61 
 
 

 
Figure 4 Mean expected part-time hours comparing single-equation and age-centred regressions 

men and women, ages 25-61 
 
 

when the behavioural process in question 
varies systematically by age and the effect of 
one or more independent variables might also 

differ across age groups.  The basic idea is to 
estimate separate equations for each age 
sample, but to include observations that are 
close to the reference age being estimated.  
Using the extra information from nearby 
observations makes it possible to statistically 
identify how marginal effects and predicted 

mean outcomes differ across the age 
distribution under consideration. 
  

The examples used here to illustrate age 
centring are fairly simple labour supply 
equations — the sequence of participation, full- 
versus part-time, and part-time hours given 
part- time employment — used in the 
Congressional Budget Office Long-Term 
(CBOLT) dynamic microsimulation.  We show 
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that moving from a single-equation to an age-
centred approach involves little loss of 

statistical precision but has a significant impact 
on estimated marginal effects and mean 

predicted outcomes by age. 
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Notes 

 

1  
Congressional Budget Office (2006).  The 

age-centring technique is also applied to 
marital transitions in CBO’s model; see 
O’Harra and Sabelhaus (2002) and Harris 
and O’Harra (2001).  For a general 
overview of the CBOLT model see O’Harra, 
Sabelhaus, and Simpson (2004).  The 

model has been applied in several academic 
papers, such as Harris, Sabelhaus, and 
Simpson (2005), Harris and Sabelhaus 
(2005), Harris and Simpson (2005), and 
Sabelhaus and Topoleski (2007).  There are 
also several published CBO reports and 
studies using CBOLT, available on the CBO 

website under ―Publications by Study Area, 
Social Security and Pensions.‖  

2   In particular, one is trading off the ability to 

identify differences in the density at a 
particular point versus the precision with 
which that difference is being identified.  

3   It is worth noting that this also can lead to a 
lot of apparent imprecision in the estimated 
constant and age terms, because if the 
slope of the process being estimated is 
relatively flat over a particular age range, 
there is too little variation by age to 
separately identify a constant and age 

coefficient.  Indeed, in some processes, one 
observes a pattern of estimated age and 
constant term coefficients that appear 
volatile, but the linear combination of the 
two actually input to the microsimulation 
model is much more stable.  

4   For illustrative purposes we have chosen to 

compare and contrast the age-centred 
equations with simple versions where age 
enters linearly, rather than equations with 
higher-order age terms, in order to 
emphasize the differences in properties.  
The primary difference we are trying to 

highlight—the fact that coefficient estimates 
for independent variables other than age 
vary across age groups—is unaffected by 

 

 

this decision.  However, it is true that the 
mean predictions by age from the standard 

model could be improved if we used higher-

order terms.     
5  The bins for the multinomial logit are for 

annual part-time hours of 125, 375, 625, 
875, 1,125, 1,375, and 1,625.  Everyone 
who works full-time (determined by the 
second equation in the module) has annual 
hours worked of 2,080.  

6   Like most dynamic microsimulations, CBOLT 
does not attempt to explicitly incorporate 
structural equations such as in van Soest, 
Das, and Gong (2002). Therefore, the 
independent variable list does not include 
measures of wage or other labour income—

differences in earnings potential are 
captured by the education terms and in the 
idiosyncratic persistence term.  

7  The other two equations—full-time versus 
part-time work, and part-time hours 
conditional on working part-time—exhibit 
the same longitudinal persistence as labour 

force participation, but the CPS data used 
to estimate the equations do not have the 
requisite lagged information.  CBOLT 
introduces that persistence into the 
simulation ex post using a technique 
described in Congressional Budget Office 
(2006).  

8 CBOLT uses different equations and/or 
bandwidth limits for people under age 25 
and over 61.  For the young, the effects of 
schooling dominate labour force decisions.  
For people over 61 the effects of social 
insurance dominate labour force decisions, 

because the eligibility age for Social 
Security is 62 in the United States. 

9  Because the terminology is not universal, it 
is worth noting that ―Social Security‖ as 
described here includes only Old Age 
Survivors and Disability Insurance or 
OASDI, which covers standard worker 

disability and retirement benefits.  
10 This is not the only way to achieve desired 

heterogeneity in labour market outcomes.  
For other examples, see the description of 
the labour force modules for the Urban 
Institute’s DYNASIM model in Favreault and 
Smith (2004) or for the Social Security 

Administration’s Modeling Income in the 
Near Term (MINT) model in Toder et al. 
(2002).  

11 The estimated thresholds or ―cut‖ para-
meters are not shown for the part-time 
multinomial logits.  Those are available 

from the authors upon request. 
12  The entire list of coefficients for reference 

ages 16 through 70 can be found in 
Congressional Budget Office (2006). 
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Appendix 1 Example implementation of age-centred regression in Stata 
  
The following is a generalised version of the 
Stata code used in the CBOLT model, provided 

for demonstration purposes only.  The full 

version of the code takes account of sex and 

age-specific differentials by implementing age-
centred regression separately for a variety of 

age group / sex combinations. 

 
 
*Declare Stata version; clear any existing data, set memory size, turn off page pause 
version 6.0 
clear 
set memory 500m 

set more off 
 
*If files moved - change this directory reference AND the four data references below 
cd "C:\Labor Force and Earnings\LFP Equations\" 
* generate a log of Stata output 
log using LFP_modified_model,replace 
 

 
*Declare lower bound age loop counters 

local iage= 16 
local jage=16 
 
*Loop through all valid single years of age (90 = 90+ in this example)  

* Note: 70+ group used in non age-centered regression estimate placed at end of example code 
while `iage'<=90 { 
 
*Call data file, deleting any existing data files 
 use "C:\Labor Force and Earnings\lfp_master_file ", clear 
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*Set age-band (kernel) width to +/- 5 years from currently considered single year of age 
 gen band=5 

 
*Limit band-width if at or near top or bottom of age-range (= 16-90 in this example) 

 replace band=1 if `iage'==16|`iage'==90|`iage'>=61&`iage'<=66 
 replace band=2 if `iage'==17|`iage'==89|`iage'==60|`iage'==67 
 replace band=3 if `iage'==18|`iage'==88|`iage'==59|`iage'==68 
 replace band=4 if `iage'==19|`iage'==87|`iage'==58|`iage'==69 
  
*Retain records (persons) in current analysis if age falls within range current age +/- band-width 
keep if age>=`iage'-band & age<=`iage'+band 

 
*Declare a set of coefficients [default to 20], setting initial values to 0.   
 gen beta1=0 
 gen beta2=0 
 gen beta3=0 
 gen beta4=0 

 gen beta5=0 
 gen beta6=0 

 gen beta7=0 
 gen beta8=0 
 gen beta9=0 
 gen beta10=0 
 gen beta11=0 

 gen beta12=0 
 gen beta13=0 
 gen beta14=0 
 gen beta15=0 
 gen beta16=0 
 gen beta17=0 
 gen beta18=0 

 gen beta19=0 
 gen beta20=0 
 
*Assign weight for current record (person), based on difference from current loop single year of 
age 

*[For 5-year age band, difference of 0 -> weight of 10; +/-1 -> 8; +/-2 -> 6; …etc.] 

 gen weight=(((band-abs(`iage'-age))/band)*10) 
 
* The following illustrative code provides an example of age-centred regression for age-band 16-
18 only, 
* reflecting the common need to set up separate regressions for separate parts of the age range, 
in order 
* to capture changes in the key behavioural determinants.  Hence the following code is executed 

* conditional upon the current loop counter age value. 
 
while `iage'>16&`iage'<=18 { 
 
*Set cohort dummy variable to 1 if born during/after 1980 
  replace chort8=1 if birthyear>=1980 
 

*Run logistic regression of Y [dep. varname] given X [indep. var names], in which the 
*variable pw (person weight] is set to equal calculated person-specific Kernel-density weight 

  logit lflwk lfp nm mar age in_school chort7 chort8 trend [pw=weight] 
 
*output stata-calculated predicted probability of labour force participation 
  predict plfp, p 

 
*tabulate output 
  table age if age==`iage', c(mean plfp mean lflwk mean lfp) 
 
*keep 1st observation 
  keep if _n==1 



SABELHAUS AND WALKER     Econometric flexibility: an age-centred regression approach 13 

 
*Set value of beta coefficients equal to coefficients calculated by logistic regression  

*replace betas that correspond to variables in the regression equation  
  replace beta1=_b[age] 

  replace beta3=_b[_cons] 
  replace beta10=_b[chort7] 
  replace beta11=_b[chort8] 
  replace beta12=_b[nm] 
  replace beta13=_b[mar] 
  replace beta14=_b[lfp] 
  replace beta15=_b[trend] 

  replace beta16=_b[in_school] 
 
*Set string variable = current single year of age 
  gen age_out=`iage' 
 
*Save results to age-specific file (concatenating generic file name with string variable recording 

single 
*year of age), replacing any earlier version of file 

  save "C:\Labor Force and Earnings\lfp_`iage'", replace 
 
*Break out of loop, as each loop applies age-centred regression to one specific single year of age 
  local iage=`iage'+100 
 } 

 
*Update local age loop counters by 1 before going round loop again for next single year of age 
local iage=`jage'+1 
 local jage=`jage'+1 
} 
 
 

*For the final desired age-group (70+ in this example) conventional rather than age-centred 
regression is 
*used, therefore no weights are needed. However, everything else follows as in the above age-
centred 
*example 

 

clear 
 use "C:\Labor Force and Earnings\lfp_master_file ", clear 
keep if age>=70 
replace chort2=1 if birthyear>=1920 
 gen beta1=0 
 gen beta2=0 
 gen beta3=0 

 gen beta4=0 
 gen beta5=0 
 gen beta6=0 
 gen beta7=0 
 gen beta8=0 
 gen beta9=0 
 gen beta10=0 

 gen beta11=0 
 gen beta12=0 

 gen beta13=0 
 gen beta14=0 
 gen beta15=0 
 gen beta16=0 

 gen beta17=0 
 gen beta18=0 
 gen beta19=0 
 gen beta20=0 
  logit lflwk lfp nm mar age ssinc education2 education3 education4 chort1 chort2 trend 
  predict plfp, p 
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  table age if age>=70, c(mean plfp mean lflwk mean lfp) 
  keep if _n==1 

  replace beta1=_b[age] 
  replace beta2=_b[ssinc] 

  replace beta3=_b[_cons] 
  replace beta4=_b[chort1] 
  replace beta5=_b[chort2] 
  replace beta12=_b[nm] 
  replace beta13=_b[mar] 
  replace beta14=_b[lfp] 
  replace beta15=_b[trend] 

  replace beta17=_b[education2] 
  replace beta18=_b[education3] 
  replace beta19=_b[education4] 
  gen age_out=70 
  save "C:\Labor Force and Earnings\lfp_70", replace 
 

use "C:\Shared\Labor Force and Earnings\lfp_16", clear 
local iage=17 

while `iage'<=70 { 
 append using "C:\Labor Force and Earnings\lfp_`iage'" 
local iage=`iage'+1 
} 
 

*Write out age-centred regression coefficients and save to file [lfp_modified_model] 
outfile age_out beta1 beta2 beta3 beta4 beta5 beta6 beta7 /* 
*/ beta8 beta9 beta10 beta11 beta12 beta13 beta14 beta15 /* 
*/ beta16 beta17 beta18 beta19 beta20 /* 
*/ using C:\Labor Force and Earnings\lfp_modified_model.txt, wide replace 


