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ABSTRACT: All-case simulation, where demographic outcomes are simulated for each person each 
simulation cycle, has been used in almost every national household microsimulation model. This paper 
suggests the use of simulation by stratified sampling with loaded probabilities. This suggestion is 
intended to provide faster simulations, particularly when using simulation cycle times much shorter than 
a year. The paper derives optimal formulas for draw numbers and loaded probabilities, and uses 
stochastic simulations to show that sampling with loaded probabilities gives similar results to all-case 

simulation. Tests with a microsimulation model of 175,000 Australians show that sampling with loaded 
probabilities can reduce run times with yearly cycles by about 43%, and run times with weekly cycles by 
about 98%. A 50-year demographic projection took 34 seconds with a yearly cycle, and 54 seconds with 
a weekly cycle. Event numbers and standard deviations are comparable with those expected from risk 
profiles. The paper concludes that sampling with loaded probabilities is theoretically valid, can be much 

quicker than all-case simulation, and does give similar estimates. Potential applications are for large 
models, or those with short simulation cycles. 
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1. INTRODUCTION 

1.1. All-case simulations 

The first household microsimulation model 
developed in response to Orcutt’s 1957 proposals 
simulated demographic outcomes for each person 
in turn, working in the order in which the persons 
were stored (Orcutt, Greenberger, Korbel & Rivlin 
1961). Unfortunately, processing persons in the 
same fixed order each cycle has the potential to 

introduce bias in some applications. Morrison 

(2006, p13) described the “sidewalk shuffle” 
alignment method, where persons in an alignment 
pool were sorted into random order before event 
simulation. Demographic outcomes were then 
simulated for the persons in the sorted pool, until 
the desired event total was reached. As the event 

probabilities were unchanged, the number of 
persons tested for the event was approximately 
equal to the number of persons in the pool. 

1.2. Simulation by sampling with loaded 
probabilities 

Testing every person for the occurrence of a 

demographic event seems inefficient, particularly 
for low-probability events. This paper proposes an 
alternative. Can we divide persons into pools, and 

only test a small proportion of persons in those 
pools with low probabilities? To ensure the correct 
expected number of events is still simulated, this 
partial sampling would be offset by loading the 

assumed probabilities of the event occurring.  
Such a process might be particularly efficient in 
short simulation cycles, where the probabilities of 
events occurring in the cycle are very low. 

1.3. Structure of paper 
The structure of the remainder of this paper is as 
follows. First, the theory under-pinning sampling 

with loaded probabilities is derived (section 2). 
Tests on some simple cases with only two risk 
groups support the theory (section 3). The large 
reductions in sample numbers feasible when 

simulating deaths are illustrated in section 4, and 

section 5 examines the actual run time reductions 
obtained in a realistic model. Section 6 compares 

expected and observed event numbers, for 
different simulation methods, cycle times and 
event orders. Section 7 similarly compares 
expected and observed event number standard 
deviations. Section 8 discusses computational 
aspects associated with implementation of this 
approach. Finally, section 9 summarises the key 

findings from the paper, and considers in which 
situations use of simulation with loaded 

probabilities might be most appropriate. 

2. THEORY 

2.1. A trivial case: uniform event 
probabilities 

Suppose we have 100 persons in a pool, each with 

20% chance of death. To simulate the expected 
20 deaths, we can randomly select any 20 persons 
from the pool, and declare them to have died. This 
simple procedure will rarely be applicable, as the 
expected number of events from a pool is unlikely 
to be an integer. For example, if there are 101 

persons in the pool, each with a 20% chance of 
dying, then 20.2 deaths are expected. To obtain 

simulations with the correct expected number of 
deaths, we can randomly draw 21 persons from 
the pool, select a random number between 0 and 
1 for each of them, and declare them to be dead if 
the random number is less than 20.2/21 (ie 

0.9619). The number of draws needed in this case 
is reduced by 79%, increasing computational 
efficiency. 
 
More formally, if there are n persons in a pool, 
each with probability pi of an event occurring, 
then the number of draws d needed from the pool 

is 
d = pi n  to the higher integer  (2.1) 
 
Let qi be the loaded probability of the event 

occurring for each of the drawn persons.  



CUMPSTON     A more efficient sampling procedure, using loaded probabilities 22 

Then  
qi = (pi n) / d (2.2) 

 

Substituting pi = 0.2, n = 101 and d = 21  
gives qi = 0.9619, as above. 
 
As each person has the same probability of the 
event occurring, this procedure works for events 
such as death where a person is lost from the 
pool, or events such as moves where the person 

remains within the pool. 

2.2. Non-uniform event probabilities, with 
no losses from pool 

The previous section assumed uniform 
probabilities. If persons in the pool have varying 
probabilities of the event occurring, a more 
complex loaded sampling procedure is needed. 

Suppose that the highest probability is pmax. 
From equation 2.2, restricting the maximum 
loaded probability to not exceed 1 requires that 
 
(pmax n) / d  <= 1 (2.3) 
 

so that the number of draws needed from the pool 
is 
 
d = pmax n to the higher integer    (2.4) 
 
As before, the loaded probability of the event 
occurring for person i is given by equation 2.2. 

This analysis is appropriate for events not causing 
losses from a pool - for example, movements 
within a geographic pool. 

2.3. Non-uniform event probabilities, with 
losses from pool 

The previous section assumed no losses form the 
pool, but some events, such as deaths and 

emigration, will cause losses. As sampling 
proceeds from the pool, the cases most at risk are 
likely to be selected, and the risk profile within the 
pool will change. This requires some modifications 
to the formulas for loaded probabilities and draw 
numbers.  

 
Let nt be the number of persons in the pool 
immediately before the tth draw (so that n1 = n). 
Also let qit be the loaded probability for person i 
during the tth draw. The probability of any person 
being picked in the tth draw is 1 / nt , so the 

probability of person i being simulated to have the 

event in draw t is qit / nt. The probability of 
person i not being simulated to have the event in 
any of d draws is 
 
(1 – qi1 / n1) (1 – qi2 / n2)  …  (1 - qid / nd)(2.5) 
 
We do not know n2 , n3 … nd in advance, because 

they will depend on whether the preceding draws 
have removed any persons from the pool.  But we 
can make the probability of person i being 
selected to have the event equal in each draw, by 

calculating loaded probabilities for each draw after 
the first with the formula  

 

qit = qi1 (nt / n1) (2.6) 
Substituting equation (2.6) in (2.5), and setting 
the result equal to the desired probability of 
person i not having the event, gives 
 
(1 – qi1 / n)d = 1- pi (2.7) 
 

Taking the 1/dth power of both sides and 
rearranging gives 
 
qi1 = n [1 - (1- pi)1/d ] (2.8) 
 
Now qi1 is the loaded probability of person i being 
selected for the event in draw 1, and we do not 

want this to exceed unity. Thus we require, for all 

the persons in the pool, that 
 
n [1 - (1- pi)1/d ] <= 1 (2.9) 
 
ie (1- pi)1/d  >= 1 – 1/n (2.10) 

 
Taking logs of both sides and rearranging gives 
the requirement that 
 
d >= ln(1 – pi) / ln(1 – 1/n)    for all i (2.11) 
 
This can be achieved by taking d as 

 
d = ln(1 – pmax) / ln(1 – 1/n)    to the higher 
integer (2.12) 
 

where pmax is the highest probability of the event 
occurring for any member of the pool.  Note that if 
pmax is small and n large, this formula for d 

approximates to that in equation 2.4.  Once d has 
been chosen using equation 2.12, it remains 
unchanged till all the d draws are completed.  For 
the person selected for testing in the tth draw, the 
loaded probability qit can be calculated by 
combining equations 2.6 and 2.8 to get 

 
qit = nt [1 - (1- pi)1/d ] (2.13) 
 
As the number nt in the pool cannot increase 
above its initial value, the loaded probabilities 
cannot exceed their values for the first draw, and 
thus cannot exceed 1. 

 
Table 1 shows the numbers of draws needed for 
pools of varying size, calculated using equation 
2.12. The minimum number of draws from any 
pool is 1, so that sampling from very small pools 
becomes inefficient. If the maximum event 
probability for a pool is about 0.63 or higher, the 

number of draws will exceed the number of 
persons in the pool.  In practice this is likely to 
occur for relatively few pools, a point illustrated in 
section 4. 
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Table 1  Number of draws to give maximum loaded probability of 1 
Number   maximum unloaded probability  

in pool 0.01 0.02 0.05 0.1 0.2 0.5 

10 1 1 1 2 3 7 

100 2 3 6 11 23 69 

1000 11 21 52 106 224 693 

10000 101 203 513 1054 2232 6932 

100000 1006 2021 5130 10536 22315 69315 

 
2.4. Sampling with loaded probabilities with 

short simulation cycles 

None of the above formulas depend on the length 
of the simulation cycle.  The assumed probabilities 
of event occurrence are likely to have been based 
on annual simulation cycles, and will have to be 
appropriately recalculated for use with shorter 

simulation cycles. 

2.5. Sampling with loaded probabilities with 

alignment 
Sampling with loaded probabilities can be adapted 
to give event numbers conforming with external 
alignment totals 

o The highest probability of the event 
occurring in the alignment pool, or some 

upper limit to that probability, is assumed 
to be known 

o An individual is randomly selected from 
the pool, their probability divided by the 
highest probability, and a random number 
drawn to see if the event occurs 

o The process is repeated until the desired 

alignment total is reached.  
 
This process is similar to the sidewalk shuffle 
described by Morrison (2006), except that random 
shuffling of the persons in the pool is replaced by 
repeated random selection. 

2.6. Uses of simulation by sampling with 
loaded probabilities in other fields 

Given its generality, it is likely that similar 
processes are being used for applications in other 
fields. Sampling with loaded probabilities uses 
stratified sampling (Ross 2006: 66-184), one of a 

wide range of variance reduction techniques used 
in simulation. 

3. TESTS ON ACCURACY 

There was some concern that the formulas in 
section 2.3 might not give completely correct 
results in practice. To test this, 10,000 repeated 
trials were made with risk pools containing 
varying numbers of low risk cases, and 500 high 
risk cases. In the first set of trials, 2,500 low-risk 

cases were assumed, each with probability of 0.1, 
so that 250 events were expected from the low-
risk cases. In the second to fifth set of trials, the 
assumed probability for the low-risk cases was 
progressively increased, and their number 

reduced, so as to maintain the expected number 
of low-risk events at 250. In each set of trials, the 

500 high-risk cases were assumed to have 
probability 0.5, so that 250 events were expected 
from them. In each set of trials, 500 events were 
thus expected. 
 

Table 2  Simulated event numbers with pools chosen to produce 500 events 
Number low 
risk persons 

Low risk rate Number high 
risk persons 

High risk rate Expected 
number of 

events 

Mean number 
from 10,000 

trials 

Standard 
deviation 

from 10,000 
trials 

2500 0.1 500 0.5 500 499.92 .16 

1250 0.2 500 0.5 500 500.12 .14 

833 0.3 500 0.5 500 499.88 .12 

625 0.4 500 0.5 500 500.03 .10 

500 0.5 500 0.5 500 500.00 .09 

 
Table 2 shows that the mean numbers of 
simulated events were all very close to the 

expected 500. The worst deviation from the 
expected 500 events was 0.12, for the second and 
third set or trials. In no case was the deviation 
from the expected 500 events greater than the 
standard deviations in the last column of table 2. 
These standard deviations are the standard 
deviations in the observed event numbers from 

10,000 trials, divided by 100 (the square root of 
the number of trials). These results suggest that 
sampling by loaded probabilities, for the case with 
non-uniform event probabilities and losses from 

the pool, can work correctly. 

4. EXAMPLE OF THE USE OF POOLS IN 

SIMULATING DEATHS 

In practice, there can be considerable 
heterogeneity in risk rates, so that segregation 
into a small number of risk groups can greatly 
reduce the numbers of draws needed to simulate 
the expected numbers of events. This is illustrated 
in table 3, using Australian data on ages and 

mortality rates. 
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Table 3  Table Draws needed to simulate the deaths in a year 175,000 Australians 

Age group Persons in group 
Average 

mortality rate 
Expected deaths 

Maximum 

mortality rate 
Draws 

0- 36441 0.00040 14.5 0.00453 166 

15- 23593 0.00060 14.1 0.00113 27 

25- 25575 0.00087 22.1 0.00138 36 

35- 26810 0.00123 33.0 0.00192 52 

45- 24156 0.00237 57.2 0.00415 101 

55- 16348 0.00642 104.9 0.01315 217 

65- 11852 0.01826 216.4 0.03697 447 

75- 7706 0.05051 389.3 0.10627 866 

85- 2563 0.18238 467.4 0.48496 1701 

Total 175044 0.00754 1319.0  3613 

 
The numbers of expected deaths in table 3 were 
estimated by applying 2001-02 mortality rates to 

a sample of 175,044 persons derived from the 1% 
2001 census sample file.  The maximum mortality 

rates are the highest applying to any age in each 
of the groups.  For example, the highest mortality 

rate for the 0-14 group is for males aged 0, while 
the highest rate for persons 85+ is for females 

aged 110. The numbers of draws needed with 
loaded sampling were calculated from equation 

2.12. For example, the number of draws needed 
from the pool for persons 55-64 was calculated as 

 
ln(1 - .01315) / ln(1 – 1/16348)          ie     217 to the higher integer 
 
These estimates suggest that good simulations of 

the deaths in a year can be made by 3,613 draws 
with loaded probabilities, rather than 175,044 
draws with true mortality rates. Note that, for this 
empirical example, the identified pmax of 0.485 
for the highest-risk group is less than 0.63 - the 
tipping point at which the number of draws starts 
to exceed the number of persons in the pool. 

5. RUN TIMES WITH AN AUSTRALIAN 

MICROSIMULATION MODEL 

5.1. Pools used to test sampling with loaded 
probabilities 

In order to explore the achievable efficiency gains 
offered by sampling with loaded probabilities, the 
technique was applied to a dynamic 
microsimulation model of Australia. The pools in 

this model used here are each combination of 8 
areas, 8 person types and 9 age groups (see table 
4), making 576 pools in all. 
 

Table 4  Areas, person types and age groups used to form pools 

Area code Area name 
Person type 

code 
Person type Age code Age group 

1 NSW 1 Partner 1 0-14 

2 Victoria 2 Lone parent 2 15-24 

3 Queensland 3 Child 3 25-34 

4 SA 4 Related person 4 35-44 

5 WA 5 Unrelated person 5 45-54 

6 Tasmania 6 Lone person 6 55-54 

7 NT 7 Group member 7 65-74 

8 ACT 8 Non-private resident 8 75-84 

    9 85- 

 
These pools were available for alignment 
purposes, and not specifically chosen for sampling 
with loaded probabilities. With hindsight, these 
pools were too fine for sampling with loaded 
probabilities, and resulted in simulated numbers of 
exits and moves being a little different from 

expected. These errors, and ways to minimize 
them, are discussed in section 6.1.  

5.2. Run times to simulate 175,000 
Australian for a year 

The run times in table 5 exclude the input of data 

and assumptions before a run, and the time 
needed to output results. Maximum probabilities 
for each risk group are included in the 
assumptions file, which takes about 0.3 seconds 
to read. There were some unexpectedly large 
random variations in run times for the first cycle, 

so all the run times with yearly cycles are the 
average of 50 runs. All the multi-cycle all-case run 
times are from single runs, and all the multi-cycle 
loaded run times are the averages of at least 3 
runs. 
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Table 5  Mean run times in seconds to simulate 175,000 Australians for a year 
Cycles per year All-case trials All-case fitted Loaded trials Loaded fitted Loaded trials 

 seconds seconds seconds Seconds as % of all-case 

1 1.13 1.58 0.64 0.66 57% 

4 4.10 4.14 0.67 0.68 16% 

12 11.37 10.98 0.75 0.73 7% 

26 23.29 22.94 0.83 0.82 4% 

52 44.90 45.15 0.98 0.97 2% 

365   2.88 2.88  

 
The run times in table 5 exclude the input of data 

and assumptions before a run, and the time 
needed to output results. Maximum probabilities 
for each risk group are included in the 

assumptions file, which takes about 0.3 seconds 
to read. There were some unexpectedly large 
random variations in run times for the first cycle, 
so all the run times with yearly cycles are the 

average of 50 runs. All the multi-cycle all-case run 
times are from single runs, and all the multi-cycle 
loaded run times are the averages of at least 3 
runs. 
 
Table 5 shows that the times required with all-
case simulations increase broadly in line with the 

number of cycles a year.  The slope and constant 

obtained by fitting a linear trend line by least 

squares minimization suggest that sampling each 
case takes about 0.85 seconds a cycle, and 
adjusting data in response to simulated events 

takes about 0.72 seconds a year, with a poor fit 
for yearly cycles (see table 5). The slope and 
constant from the trend-line fit with loaded 
probabilities suggest that sampling takes about 

0.006 seconds a cycle, and adjusting data in 
response to simulated events takes about 0.66 
seconds a year. The fit with loaded probabilities is 
good up to 365 cycles a year.  The numbers of 
simulated events, and the time taken to process 
them, should be very similar with both methods. 
As expected, the time savings are in sampling. 

 

Figure 1  Run times with varying simulation cycles 
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5.3. Run times for projections for up to 50 

years 
 

Table 6  Run times in seconds for projections up 
to 50 years 

Projec
tion 
years 

All-case 
Yearly 

Loaded 
Yearly 

Loaded 
Weekly 

Loaded as% 
of all case  

Yearly 

1 1.13 0.64 0.98 57% 

10 11.59 6.18 9.81 53% 

20 24.28 12.82 20.28 53% 

30 37.35 19.72 31.2 53% 

40 51.93 27.25 42.51 52% 

50 66.32 34.16 53.87 52% 

The yearly values in the first line of table 6 are 

those in the first line of table 5. They show 
sampling with loading probability has a one-year 

run-time about 57% of all-case sampling, which is 

out of line with the 53% or 52% in the multi-year 
lines of table 6. Comparing the calculation steps 
involved in all-case and loaded sampling suggests 
that the savings from loaded sampling should be a 
constant proportion, regardless of the number of 
projection years. The one-year result is an 
anomaly.  

 
Figure 2 shows that both all-case and loaded 
sampling methods have a slight increase in run 
time per year for higher projection times. This is 
because of the population growth of about 30% 
projected over the 50 years. 

 

Figure 2  Run times with one cycle per year 
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Table 7  Event totals from one-year projections, each event simulated separately (50 run averages)  
Event Expected Observed all-case yearly Observed loaded yearly  Observed loaded weekly  

Births 2170 2179 2183 2208 

Deaths 1372 1379 1330 1370 

Emigrants 2284 2280 2251 2275 

Exits 6254 6441 6203 6592 

Moves 12468 12411 12330 12364 

 
Some of the possible reasons for the differences in 
table 7 are: 

o Random variations in the numbers of 
simulated events. For example, if the 

expected 2,208 deaths were Poisson 
distributed, they would have a standard 
deviation of 47, and averaging over 50 
runs would reduce this to about 7. The 

observed death numbers from all-case 
yearly and loaded weekly are thus within 

one standard deviation, while those from 
loaded yearly runs are well outside. 

o Derivation of the expected numbers in a 
manner inconsistent with the simulations. 
Event probabilities, particularly for births, 
exits and moves, depend on a number of 
person and household characteristics. 

While the expected probabilities for each 
person were based as closely as possible 
on the data at the start of the first 
projection year, some approximations may 
have occurred. One error in expected 
numbers was found during checking. 

o Movements between sampling pools 

resulting from births, deaths or emigrants. 
For example, if a partnered male is 
simulated to die, then his partner will be 
removed from a partner pool, and put into 
a pool of lone persons or lone parents. As 
deaths from these pools are simulated 

after deaths from partner pools, then the 
former partner may be double exposed to 
the risk of death.  As birth, death and 
emigration are low-probability events, and 
some offsetting may occur, the resulting 
errors are likely to be small. A solution is 
to use pools based only on age. 

o Changes in type or area for exits. In the 
simulations with loaded probabilities, it 
was assumed that exits do not cause any 

losses from the pool. Trials show that 
about 86% of exits involve a type change, 

and about 10% involve an area change. 
With the area/type/age pool structure 
being used, changes of either type or area 
result in removal from the pool being 

simulated. This is not a problem with all-
case simulations, but can cause 
insufficient persons to be sampled when 
using loaded probabilities. This seems 

likely to be a major reason why exits with 
a yearly cycle and loaded probabilities 

were 3.7% below the all-case number. A 
solution is to use pools based only on age, 
so that no pool losses occur. 

o Changes in area for moves. About 14% of 
moves involve an area change, and moves 
with a yearly cycle and loaded probabilities 
were 0.7% below the all-case number. 

Again, a solution is to use pools based 
only on age. 

o Changes in person types during the year. 
If type change assumptions are 
inappropriate, then there can be rapid 
changes in the numbers of particular types 
of persons in the first projection year. This 

may be a major reason for the 6% 
increase in exit estimates with loaded 
probabilities when changing from annual 
to weekly cycles. 

o Programming errors. The household 
microsimulation model used here was 

primarily constructed as a test-bed for 
different simulation techniques. It has 
been substantially validated and 
debugged, but there is potential for errors 
of the order of 10% in exit and move 
numbers to be still undetected, and for 
smaller errors in births, deaths and 

emigrants. 

6.2. One-year projection results with all 
events simulated together 

Table 8  Event totals from one-year projections, all events simulated together 
Event Expected Observed all-case yearly Observed loaded yearly  Observed loaded weekly  

Births 2170 2175 2182 2232 

Deaths 1372 1375 1335 1375 

Emigrants 2284 2282 2263 2304 

Exits 6254 6333 6075 6611 

Moves 12468 13418 13210 12826 
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Table 8 shows the same expected numbers as 
table 7, but with observed numbers obtained by 

simulating all events together. Within each 

simulation cycle, events have been simulated in 
the order births, deaths, emigrants, immigrants, 
exits and moves. Apart from moves, simulated 
event numbers are similar for both tables. Move 
numbers increased by about 8% for all-case 
simulation, 7% for loaded probabilities with a 
yearly cycle, and 4% for loaded probabilities with 

a weekly cycle. Move probabilities depend strongly 

on person types, so that poorly chosen exit 
assumptions can cause significant changes to 

moves in a year. 

6.3. Comparisons between normal and 
reverse order simulations 

Galler (1997) recommended short simulation 
cycles. To test their usefulness, simulations were 
made in normal and reverse order with yearly 
cycles, and then in normal and reverse order with 
weekly cycles. 

Table 9  Table one-year projections, with events in normal & reverse order (50 run averages) 
Event  Yearly   Weekly  

 normal reverse change normal reverse change 

 order order in year order order in year 

Births 2182 2243 61 2232 2224 -8 

Deaths 1335 1331 -4 1375 1378 3 

Emigrants 2263 2308 45 2304 2311 7 

Exits 6075 6540 465 6611 6615 4 

Moves 13210 12323 -887 12826 12819 -7 

Table 9 shows the changes from simulating events 
in reverse order are much smaller with weekly 

simulation cycles, particularly for exits and moves. 

These results strongly confirm the desirability of 
short simulation cycles.

 

6.4. Comparisons between all-case and loaded 50-year projections 

Table 20  50-year projections with yearly cycles (10 run averages) 
Event/ All-case All-case Loaded Loaded Loaded 

persons yearly yearly yearly yearly as % of 

at end mean SD mean SD all-case 

Births 102831 541 101611 516 98.8% 

Deaths 92205 127 91924 130 99.7% 

Emigrants 123775 186 123024 232 99.4% 

Exits 355304 891 347052 746 97.7% 

Moves 797511 1716 778254 937 97.6% 

Persons at end 226755 488 226566 504 99.9% 

Table 10 compares the averages of 10 50-year 
runs using all-case simulation with the averages of 
10 runs using loaded probabilities. The expected 
numbers of births, deaths and emigrants are 
reasonably similar for both simulation methods. 
The 2.3% reduction in exits is less than the 4.1% 

for the one-year projections in table 7, and may 
similarly reflect the assumption of no losses when 
most exits did in fact result in losses from the 
sampling pools. The 2.4% reduction in moves is 
more than the 0.7% in table 7, and may reflect 
the 50-year accumulation of type errors when 
using loaded probabilities. Exits and moves do not 

affect person numbers, and the projected 
numbers of persons are very close. 

7. CHECKS ON EVENT NUMBER STANDARD 
DEVIATIONS 

From initial trials, it was noted that simulations 
with loaded probabilities sometimes gave much 

lower standard deviations in event numbers than 
all-case simulations.  This was unexpected, but 

investigation showed that low standard deviations 
were likely when sampling from pools with limited 
probability ranges.  Some approximate theoretical 
estimates of expected standard deviations were 
thus made, and compared with the observed 
standard deviations with the two methods with a 
yearly cycle, and with loaded probabilities with a 

weekly cycle. 
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Table 31  Standard deviations for one-year projections (based on 50 runs) 
Event All-case All-case Loaded Loaded Loaded Loaded 

 Yearly yearly yearly Yearly weekly weekly 

 Expected Observed Expected Observed Expected Observed 

Births 43.8 38.6 43.6 38.7 43.5 52.8 

Deaths 35.4 32.7 28.0 29.9 31.7 32.2 

Emigrants 47.3 38.6 26.2 35.6 36.5 42.8 

Exits 73.7 67.6 33.2 39.8 54.7 59.6 

Moves 98.3 99.7 10.3 18.9 50.0 55.1 

 
Table 11 compares approximate expected 
standard deviations for each event type with those 
observed from 50 runs, simulating all events 
together.  For each sampling pool, the average 

loaded probability was calculated as  
 expected number of events / number of 
draws from pool 
where the number of draws was calculated using 
equation 2.4 or 2.12. 
The expected variance of the number of events 

from that pool was then approximately estimated 
assuming the variance formula for a binomial 
distribution 
 number of draws * average loaded 
probability * (1 – average loaded probability) 
 
Variances were summed across all pools, and the 

square root taken to give an approximate 
estimate of the standard deviation. Given the 
approximate nature of the expected standard 

deviations, and the broad confidence limits 
generally associated with standard deviation 
observations, the expected and observed standard 
deviations are reasonably comparable. 

 
As shown in table 2, sampling with loaded 
probabilities can give low standard deviations, 
particularly for risk combinations with a narrow 
range of risks. This is because the loaded 
probabilities can all be close to 1, and there will be 

little variability in the simulated numbers of 
events.  For moves, most of the persons in each 
sampling pool had similar probabilities, so that 
loaded probabilities with a one-year simulation 
cycle gave standard deviations that were much 
lower than with all-case sampling.  

 

As the number of simulation cycles in a year 
increases, more pools have very low numbers of 
expected events, with loaded probabilities well 
below 1, and higher variability in simulated 
numbers of events. Comparing the values for 
loaded simulations with yearly and weekly cycles, 
all the observed standard deviations increased, 

and particularly so for moves. 
 
 
 
 
 

 
 

 

Table 42  Observed coefficients of variation for 
one-year projections (based on 50 runs) 
Event All-case Loaded Loaded 

 yearly yearly weekly 

Births 0.018 0.018 0.024 

Deaths 0.024 0.022 0.023 

Emigrants 0.017 *0.016 0.019 

Exits 0.011 0.007 0.009 

Moves 0.007 0.001 0.004 

 
The coefficients of variation in table 12 were 

obtained by dividing the observed standard 
deviations in table 11 by the observed numbers in 
table 8. Regardless of simulation method or cycle 
length, the coefficients of variation for the tested 
model are small, and may not be important in 
most practical applications.  

8. COMPUTATIONAL ASPECTS 

Computational details for loaded sampling will 
depend strongly on the database structure and 
programming language. Test results here are from 
a model using a list structure rather than a 
relational database. A separate list is maintained 
of member addresses for each of 576 pools (each 

combination of 8 areas, 8 person types and 9 age 
groups). These pools are maintained for alignment 
purposes, but they also proved useful for loaded 
sampling. All data for a person are stored as a 
single line in an array, and their address in the 
array is recorded in the relevant pool list. The 
address of each new person in a pool is added to 

the end of the list. The address of any exiting 

person is replaced in the list by the address 
currently at the end of the list, with the length of 
the list being reduced by one. A random number is 
drawn, and multiplied by the length of the list, to 
randomly select a person from a pool  
 

A similar list structure has been used by INHASIM 
for many years (Inagaki 2009). INHASIM uses a 
template class of sequence containers, based on 
Microsoft’s Visual C++ STL list class, that 
maintains its elements in a linear arrangement 
and allows efficient insertions and deletions at any 

location within a sequence.
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9. LIKELY APPLICATIONS 

In practice, where is sampling with loaded 
probabilities likely to be useful?  Models with fine 

geographic subdivisions will generally require at 
least 1,000 persons to realistically represent each 
subdivision, and may thus become very large. 
Models with many different types of physical 
disability will also need to be large, so as to 
adequately represent uncommon disabilities. 
Models including processes with short time spans 

are also likely to get useful time savings from 
sampling with loaded probabilities. For example, a 
microsimulation model of dwelling sales and 
rentals is likely to need both a detailed geographic 
structure, and a simulation cycle of a week or 
less. 
 

Existing models of moderate size but unusually 
slow run times are unlikely to benefit from 
sampling with loaded probabilities. Their slowness 
may reflect programming and data storage issues, 
or excessive use of alignment, and more efficient 
sampling will have little effect. Adding sampling 

with loaded probabilities to any existing model 
may require changes to data indexing procedures, 
and will require additional model validation. 
 
Fredriksen, Knudsen & Stolen (2011) describe the 
use of multithreading to greatly reduce runtimes 
in the MOSART model of the whole Norwegian 

population. They comment that simulation steps 
involved in household formation are cumbersome 
to multi-thread, due to often subtle interactions 

between individuals, with little or no effect on 
runtime. Sampling with loaded probabilities seems 
particularly relevant to births, deaths, 
immigration, emigration and household changes, 

all of which are likely to be hard to multithread. 
 
Sampling with loaded probabilities thus seems 
appropriate for new ambitious models, with many 
persons or short simulation cycles. Ideally, the 
sampling processes should be designed at the 

same time as data storage and alignment. 

10. CONCLUSIONS 

Section 2 shows that sampling with loaded 
probabilities is feasible, and gives formulas for the 

numbers of persons drawn from each pool, and for 

the loaded probabilities. The run times in section 5 
confirm that sampling with loading probabilities 

can be much quicker, and the comparisons in 

sections 6 and 7 show that it can give similar 
results to all-case simulation. 
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