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ABSTRACT: A dynamic model with cross-sectional dynamic ageing builds up complete synthetic life 

histories for each individual, starting from a survey dataset or an administrative dataset. Many of these 
datasets include weights. This is a problem for dynamic microsimulation models, since the most obvious 
solution, expanding the dataset, is not always advisable or even possible. This short paper presents an 
alternative method to use weights in dynamic microsimulation models with dynamic ageing. This 
approach treats the weighting variable as just another variable in the model, and the weights are only 

used after simulation to derive weighted simulation results. Tests using Australian data confirm that 
weighted variables give sensible results, with reductions in runtimes and memory requirements. 
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1. INTRODUCTION 

Dynamic models with cross-sectional dynamic 
ageing build up complete synthetic life histories 

for each individual in the dataset, including data 
on mortality, labour market status, retirement 
age, savings and so on (Emmerson, et al., 2004, 
3). They do so starting from a survey dataset or 
an administrative dataset. Many of these datasets 
include weights, which are needed so that the 
sample reflects unbiased and credible sample 

estimators of population parameters. This is a 

problem for dynamic microsimulation models, 
since the most obvious solution, expanding the 
dataset, is not always advisable or even possible 
with unscaled probability weights or frequency 
weights. 
 

This short paper presents an alternative method, 
using weights in dynamic microsimulation models, 
rather than simply expanding the dataset. The 
paper starts by briefly discussing the use of 
weights. As expanding the starting dataset using 
the frequency weights is in many cases not a 

feasible option, an alternative way of using 
weights will be presented. This approach treats 
the weighting variable as just another variable in 
the model, and the weights are only used after 

simulation to derive weighted simulation results. 
The consequences of using weights in the case of 
alignment are discussed. Tests using Australian 

data confirm that weighted variables give sensible 
results, with reductions in runtimes and memory 
requirements. Runtime and memory reductions 
may be particularly useful for short time span 
projections. The first author developed the 
concepts and theoretical analysis, and the second 
author did the testing. The authors have not been 

able to find any references to dynamic 
microsimulation models using weights 

2. USING WEIGHTED DATA IN 
MICROSIMULATIONS 

2.1. Why weights ? 

National statistical agencies often carry out 
household surveys, assigning weights to each 
respondent household. For example, the 
Australian Bureau of Statistics (2003a, 7) 
surveyed incomes and housing costs, using 
sampling rates dependent on state or territory. 

Panel data sets also often use household weights, 

which need to change as households cease 
responding, new households are added and overall 
population characteristics change. Census sample 
files, such as the 1% sample file available from 
the Australian 2001 census, may have known 
biases which can be approximately corrected using 
weights. If complete administrative records are 

not available as a starting point for cross-sectional 
dynamic models, it may be necessary to use 
weighted data. 

2.2. Using frequency weights to expand 
datasets before simulation 

A straightforward way of using frequency weights 

is to ‘expand’ the starting dataset before 

simulation. Frequency weights are integer 
numbers that represent the number of population 
cases that each sample case represents. When 
each object (household or individual) has a 
frequency weight fx, then the population can be 
derived from the sample by replacing each object 

by fx copies of itself. Put differently, fx-1 clones are 
made of each object with weight fx. The starting 
dataset thus ‘absorbs’ the weights and becomes 
the population, and the model can be run as 
would be the case without weights. This data 
expansion however can be a problem since 
dynamic-ageing microsimulation models already 

use a lot of memory, and require a lot of time to 
run. Expanding the starting dataset obviously 
enhances these problems.  
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2.3. Using weighted data during simulations 
This paper presents an alternative way in which 

frequency weights can be included in dynamic 

microsimulation models. In contrast to the 
previous approach, the weights are not used to 
expand the starting dataset before, but are used 
and modified during simulation. So the previous 
approach used the weights to change the starting 
dataset of the model, and then applied the model 
to this dataset. Now we do not change the starting 

dataset, but treat the household weight variable 
as any other variable. The simulated weights are 
then used to weight the simulated dataset in the 
production of aggregates, indices of poverty and 
inequality, et cetera. The discussion will pertain to 
household weights, but the situation in case of 
individual weights will be an obvious simpler case. 

2.4. Simulation of events involving only one 
household 

The weighting variables in most survey datasets 
are ‘shared weights’ that pertain to the household 
level. This is all the more important in the case of 
microsimulation models, since weighting needs to 

preserve the household structure, because this 
structure is later needed to simulate equivalent 
household income that forms the basis of 
indicators of poverty and inequality. However, 
when individuals share an equal weight when they 
are members of the same household, then this 
has consequences when new individuals or 

households appear during simulation. To see this, 
remember that a frequency weight equal to 10 

implies that an observed individual represents 10 

‘actual’ individuals with the same characteristics. 
When a new individual appears through birth, then 
the obvious solution is that the newborn receives 
the same weight as the other members in the 
household. So in our example, it is as if 10 
households each received a newborn child. An 
equally obvious situation appears when someone 

leaves a household to start a one-person 
household of his or her own. This can be the case 
when a child ‘leaves the nest’, or when a couple 
divorces. In this case, the result is two households 
with equal weight. A third and final example of an 
obvious situation is when a household immigrates 
or emigrates. In this case, it is as if 10 households 

entered or left the country. 

2.5. Simulation of events involving more 
than one household 

A more complicated situation however arises when 
two individuals from different households with 
different weights form a third household. What 

weight should this newly created household get? 
To see the problem more clearly, suppose two 
households X and Y. Both households consist of 
two individuals, denoted X1, X2, Y1 and Y2. Now 
suppose that individuals X2 and Y2 fall in love and 
form a new household, say, Z. What frequency 
weight should this household get?

Figure 1  Example of the alternative strategy  
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Start from the obvious case where the frequencies 
of both households are equal, say fx=fy=3. In this 

case, the frequency weight of the new household 

is also equal to 3. Or, one individual X2 from three 
households 2 and 3 of type X (X22 and X32) forms 
a partnership with one individual Y2 from three 
households 1 and 2 of type Y (Y12 and Y22), hence 
creating three new households of type Z. The case 
where the weight of both donating households is 
exactly the same is however trivial in that it will 

seldom appear.  
Suppose next that the frequencies of both 
households is fx=3 and fy=2. The problem arises 
from the fact that the weights fx and fy are 
unequal. This situation is described in Figure 1. 
The solution again lies in interpreting it as if the 
dataset was expanded: there are 3 households of 

‘type x’ and 2 households of ‘type y’. Denote these 

expanded households X1 to X3 and Y1 and Y2. 
Hence, individual Y2 of both households Y1 and Y2 
forms a partnership with individual X2 from two 
out of three households X. The result is that there 
are two new households Z1 and Z2, both 

consisting of a pair of individuals X2 and Y2. There 
are also two ‘old’ households Y, of which individual 
Y2 has left, and only Y1 remains. Likewise, there 
are two ‘old’ households X, of which individual X2 
has left, and only X1 remains. Finally, one 
household of type X remains unchanged, 
consisting of X2 and X1. In short, when the 

frequency weights of the two ‘donating’ 
households differ, the household with the highest 
frequency (in this case household X with fx=3) is 
expanded to two households, of which one has a 

weight equal to fy.  

2.6. General formulation 
More generally, the problem is as follows. 

Donating households X and Y consists of nx and ny 
individuals (nx, ny≥1) and have frequency weights 
fx and fy (fx, fy≥1, fx≠fy). Summarize these 
households as X[x1..xnx; fx] and Y[y1..yny; fy]. 
Individuals x1 and y1 from the donating 
households form a new household Z with an 

unknown frequency weight fz. The solution is to 
break up X and Y to subsets with equal weights 
fz=min(fx, fy), and then create Z with weight fz. 
The resulting situation is  

1. Household Z[x1, y1; fz] is the new created 

household. 

2. Household X[x2..xnx; fz] is the donating 

household X without individual x1.  

3. Household Y[y2..ynx; fz] is the donating 

household Y without individual y1. 

4. Household X[x1..xnx; fx- fz] is the remaining 

donating household X with individual x1. 

5. Household Y[y1..ynx; fy - fz] is the remaining 

donating household Y with individual y1. 

Note that either cases 4 or 5 are empty. 
 
In the previous example, nx=ny=2, fx=3 and fz=2. 
The solution then is  

1. Household Z[x1, y1; 2] is the new created 

household with frequency weight 2. 

2. Household X[x2; 2] is the donating 

household X without individual x1.  

3. Household Y[y2; 2] is the donating 

household Y without individual y1. 

4. Household X[x1,x2; 1] is the remaining 

donating household X with individual x1. 

5. Household Y[y1..y2; 0] is the remaining 

donating household Y with individual y1. 

This household does not exist in the 

solution. 

Where the numbers 1 to 4 are shown in Figure 1. 

2.7. Gradual decrease in weights 
The method presented in this paper involves the 
partial expansion or “splitting up” of individual 
weighted households in case of moves of 

individuals in between households of different 

weights. As a result of a continuous process of 
moves and the accompanying partial expansions, 
the average size of the weights will gradually 
decrease as the dataset becomes more and more 
expanded. In some future simulation year, all 
weights will have been reduced to one, and the 
dataset will have been fully expanded.  

3. ALIGNMENT AND WEIGHTS 

The alternative strategy of treating the frequency 
weight as any other variable has as the main 
advantage that it prevents large losses in 
efficiency involved in expanding the starting 

dataset. However, a problem arises in how the 
microsimulation model applies alignment 

procedures. Alignment is a general name for a set 
of procedures for achieving an aggregate 
simulation result in line with a desired result, 
usually based on predictions of semi-aggregate 
models or social-policy scenarios. If ‘aggregate 
simulation result’ is defined as an average or sum 

of a continuous variable (usually earnings or 
income) then the procedure is known as 
‘monetary alignment’. If the ‘aggregate simulation 
result’ is the number of persons in a state or 
experiencing an event, we discuss ‘state’ or ‘event 
alignment’ of discrete variables. 
 

If the starting dataset is expanded to take into 
account frequency weights, then all alignment 

procedures should be unaffected. If weights are 
treated as any other simulation variable, as is the 
case in our alternative strategy, then applying 
alignment without taking them into account will 
result in simulation errors. The simulation results 

need to equal the exogenous data after the 
weights have been applied. The procedures used 
to align models based on weighted data will 
depend on the situation, being strongly affected 
by the alignment precision and runtime reductions 
required. 

 
In theory, alignment totals for persons in each 
possible state can be replaced by alignment totals 
for each possible event leading to that state. In 
practice, calculating the event alignment totals 
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may be difficult, as the sources for the state 
alignment totals are likely to lack the necessary 

detail. For this paper, however, we assume that 

state alignment can be achieved by event 
alignment. 
 
Li and O’Donoghue (2011) provided distortion and 
computational cost measures for seven different 
event alignment methods. They concluded that 
“selecting the ‘best’ alignment method is not only 

about the algorithm design, but also the 
requirements and reasoning in a particular 
scenario”. The last three of the methods they 
tested involved sorting the records according to 
some calculated rank, and selecting cases in rank 
order until the desired alignment total was 
reached. Of these three “alignment by sorting” 

methods, SBDL (sorting by the difference between 

logistic adjusted predicted probability and random 
number) has been widely used since its 
suggestion by Johnson (Morrison 2006). 
 
Cumpston (2009) suggested an “alignment by 

random selection” method, involving randomly 
selecting cases for event simulation until the event 
alignment total was reached. He showed that its 
distortion performance was similar to that of 
SBDL. 

3.1. Event alignment with weighted records 
Alignment by random selection, as well as by 

sorting, can readily be used with weighted 
records, as each involves selecting cases until the 
desired alignment total is reached. The only new 

problem is that the weight of the last selected 
case may cause the simulated total to exceed the 
alignment total. We suggest three strategies to 
deal with this problem, and provide test results 

using the first and third of these strategies. 

3.1.1. Strategy 1: split up the last household. 
Suppose the last selected household has caused 
an overshoot beyond the alignment total. Then 
that household can be split into two parts, one 
simulated to have enough events to reach the 

alignment total, and the other simulated not to 
have any events. 

3.1.2. Strategy 2: select a household for 
alignment to give the lowest possible 
mismatch 

When the last selected household has caused an 
overshoot beyond the alignment total, discard that 

selection, and continue selecting households until 
an exact match is obtained. If no exact match can 
be obtained, select the household giving the 
minimum mismatch. If using sorting by random 
selection, a limit should be placed on the total 
number of selections after overshoot. 

3.1.3. Strategy 3: carry forward any 

misalignment to the next period 
Here the best alternative is chosen between 
implementing the event for the whole or none of 
the last household, depending on which 
alternative results in the smallest mismatch. In 
case the last household is chosen not to have the 

event, the resulting shortfall in event numbers is 

added to the alignment total for the next period. 
In the alternative case, there is an excess in event 

numbers, which is then deducted from the 

alignment total of the next period. 

3.2. What are the advantages and 
disadvantages of these strategies? 

o The first strategy requires the least possible 
number of selections, but requires further 
splitting up of weighted households, thereby 
reducing the marginal efficiency gain of 

weighting the dataset.  
o The second strategy avoids splitting up 

households, but has two disadvantages. Many 
more records may have to be selected, and the 
degree of mismatch is not controlled. 

o The third strategy requires no additional 
splitting, and no additional selections have to 

be made.  Differences from alignment targets 
should largely cancel each other out over 
several periods.  

3.3. Australian data used for testing 
Weighted unit records from the 2000-01 Survey of 
Income and Housing Costs (SIHC), Australian 

Bureau of Statistics (2003a), were converted into 
suitable input files for this model. These files 
covered 16,824 persons, grouped into 6,786 
households.  
Dwelling weights in the SIHC sample were 
intended to replicate the Australian population of 
about 19.4m. To give an unweighted sample size 

of about 175,000, the weights were multiplied by 
0.00937, obtaining dwelling weights ranging from 

1.66 to about 34. These weights were then 
rounded to the nearer integer. For these tests, the 
sample data were split into 8 regions (the seven 
states and the Australian Capital Territory), and 
migration modelled between the regions.  

3.4. Model changes to use weighted data 
The SIHC dataset was run with the Cumpston 
model (2009). The model was extended to input, 
store and update a weight for each occupied and 
vacant dwelling. A particularity of this model is 
that it simulates dwellings separately from 

households. When a household moves out of a 
dwelling, the dwelling is assumed to continue in 
existence as a vacant dwelling, with the same 
location, structure, market value and potential 
rent. Then the destination for a moving household 

is simulated, taking into account the destination 
patterns of moving households. Finally, out of 

three randomly-selected vacant dwellings, the one 
most closely meeting the housing patterns of the 
moving household is chosen. For the purpose of 
this paper, this procedure was adapted to 
incorporate weights as follows: 
o if the weight of the moving household is 

greater than the weight of the selected 

dwelling, that dwelling is assumed to be 
become fully occupied, and the weight of the 
source household is reduced accordingly, with 
destination and dwelling searching by the 
source household continuing 

o if the weights are equal, the source household 

occupies the selected dwelling, with the source 
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dwelling becoming vacant, and keeping its 
original weight 

o if the weight of the moving household is less 

than the weight of the selected dwelling, the 
selected dwelling is assumed to become 
occupied with weight equal to that of the 
source dwelling, and an identical vacant 
dwelling is assumed in the destination area, 
with weight equal to the difference between 
the selected and source dwellings. 

 
Similar principles were used for exits (where an 
exit is any move of one or more persons out of a 
dwelling, where at least one person remains in the 
dwelling), and immigrants. The microsimulation 
model contained assumptions about the numbers 
of immigrants each year, and their destination, 

age and type distributions. The same immigration 

assumptions were made, with each immigrant 
household given a weight of 10 (chosen to be 
close to the average weight of 10.4 for dwellings 
at the start of each microsimulation). 
 

Thus, the separate modelling and simulation of 
households and dwellings introduces additional 
splitting of households in the simulation process, 
on top of the splitting required for marriage, 
cohabitation, and the alignment processes. 

3.5. Alignment methods used during testing 
Alignment totals for births, deaths, emigrants and 

immigrants were available for 8 regions, 
subdivided into 9 age-groups. Alignment by 
random selection was used to give one-pass 

alignment of these events for each combination of 
region and age-group. Alignment was thus done 
separately for each of 72 alignment pools, for 
each of four event types. To allow random 

sampling within each alignment pool, lists of 
person reference numbers were maintained for 
each pool, updated each time a person changed 
regions, and recreated each year to allow for age 
changes. 
 

For example, the alignment total for deaths 
amongst persons aged 75 to 84 in Victoria in the 
third projection year was 105. Persons were 
selected at random from those in this alignment 
pool, and if their probability of death was greater 
than a random number between 0 and 1, assumed 

to die. The number of deaths for the pool was 

increased by the weight for the household, unless 
this would have given total deaths exceeding 105. 
Applying the first alignment method, a death 
resulting in an excess over the alignment total 
was dealt with by splitting the household, so that 
enough persons died to exactly reach the total, 
and the remainder were assumed to remain alive. 

For example, if 100 persons had already been 
simulated to die, and the next person simulated to 
die had a household weight of 15, then 5 persons 
would be assumed to die, and the remaining 10 
remain alive in a new household. Death simulation 
for the pool ceased when the alignment total was 

reached. 
 

This alignment process created some additional 

household splitting, on top of the splitting due to 
the process of marriage, cohabitation and 

household moves. This reduced the performance 

gains potentially available from the use of 
weights. As an alternative, the third proposed 
alignment method was therefore tested, choosing 
the best alternative between implementing the 
event for the whole or none of the last household, 
and carrying forward any misalignments to the 
next period.  In the above example, assuming all 

the persons to die in the last household would 
have exceeded the alignment total by 10, while 
assuming none to die would have fallen short by 
5. No persons would thus have been assumed to 
die in the last household, and the alignment total 
for the next period would have been increased by 
5. This modified alignment strategy was used in 

the cases with alignment in tables 1 and 2. 

3.6. Tests using Australian data 
The SIHC dataset was run with the Cumpston 
model (2009), using birth, death, emigration and 
immigration assumptions chosen so as to give a 
2051 population estimate approximately equal to 

the 34.2m projected by the Australian Bureau of 
Statistics (2008, 39, series B). 
 
Alignment was based on national population 
projections (Australian Bureau of Statistics, 
2003b), providing yearly projections of births, 
deaths, emigrants and immigrants for each 

region, and subdivisions of these event numbers 
were obtained for 9 age-groups (0-14, 15-24, 25-
34, 35-44, 45-54, 55-64, 65-74, 75-84, 85+). 

More recent population projections (Australian 
Bureau of Statistics 2008) showed higher growth, 
so the alignment totals were multiplied by 1.383 
for births, 1.006 for deaths, 1.077 for emigrants 

and 1.275 for immigrants. These subdivided 
numbers were used as alignment totals, for the 
tests with event alignment.  No alignment totals 
were available for household exits or household 
moves. 
 

For the weighted data, the numbers of immigrant 
families in each year were too low to properly 
reflect the diversity of immigrants, so immigrant 
families for each projection decade were pre-
generated at the start of the decade, and 
randomly drawn without replacement. Close 

alignment was obtained each year for births, 

deaths and emigrants, but alignment of 
immigrants occurred over each decade.  

3.7. Results of tests using Australian data 
The first line of Table 1 describes the results when 
the weighting procedure is not applied and the 
model is run on the ‘expanded’ dataset. Averaging 
over 10 runs, the average runtime between 2001 

and 2051 was 39.07 seconds. The second line 
shows that applying the weights method proposed 
in this paper reduced the average runtime by 
about 20% to 31.35 seconds. The average 
number of person records during the 50 years was 
about 81.6% of the number with unweighted data. 

A “person record” is the record of all the details 
for an individual, including the weight of the 
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household in which the person lives. For this 
example, the number of person records at the 

start of the 50 years was 9.6% of the number with 

unweighted data, rising to 99.4% at the end of 
the 50 years. The 80.2% runtime as a percentage 

of the unweighted runtime is broadly similar to the 
81.6% average number of records as a 

percentage of the unweighted records, as most of 

the simulation calculations are per record.  

 
Table 1  50-year projections using unweighted and weighted data 
 

Weighted Alignment Moves Runtime Runtime Average number 

Data   (seconds) as % of of records as % 

    unweighted of unweighted 

No No Yes 39.07 100.0% 100.0% 

Yes No Yes 31.35 80.2% 81.6% 

Yes Strategy 1 Yes 32.60 83.4% 83.0% 

Yes Strategy 3 Yes 32.49 83.2% 82.3% 

No No No 31.58 100.0% 100.0% 

Yes No No 19.72 62.4% 57.9% 

Yes Strategy 1 No 20.52 65.0% 60.5% 

Yes Strategy 3 No 20.12 63.7% 58.5% 

 
 

Line 3 of Table 1 shows that using alignment 
strategy 1 increased the runtime from 80.2% to 
83.4% of the unweighted runtime. This is partly 
due to the additional record splitting caused by 
alignment strategy 1, as shown by the increase in 
the average number of records, as a percentage 
of the unweighted case, from 81.6% to 83.0%.  

Line 4 of Table 1 shows that using alignment 
strategy 3 gave slightly lower runtimes, and 
slightly fewer records, than strategy 1. These 
results were as expected, as strategy 3 selects the 

best alternative between implementing the event 
for the whole or none of the last household, 
depending on which alternative results in the 

smallest mismatch. Strategy 1 exactly achieved 
the alignment targets for births, deaths and 
emigrants, and strategy 3 very closely achieved 
the targets. 
 
Lines 5 to 8 of Table 1 are similar to lines 1 to 4, 

except that no household moves are assumed (a 
common assumption in models with only one 
region). Using weighted data with no alignment 
reduced the average runtime by about 38%, 
compared with the 20% saving with household 
moves simulated. Alignment strategy 1 again gave 
modest increases in runtimes and record 

numbers, with strategy 3 giving slightly lower 
increases. 

4. CONVERGENCE FROM WEIGHTED TO 
UNWEIGHTED PROJECTIONS 

The method presented in this paper involves the 
partial expansion or “splitting up” of individual 
weighted households in case of moves of 

individuals in between households of different 
weights, or of households in between dwellings. 
As a result of a continuous process of moves and 
the accompanying partial expansions, the average 
size of the weights will gradually decrease as the 
dataset becomes more and more expanded. In 

some future simulation year, all weights will have 

been reduced to one, and the dataset will have 
been fully expanded. The total efficiency gain of 
using weights in the way suggested by this paper 
depends on the average initial size of the weight, 
and the speed of the convergence process. This is 
illustrated in Figure 2. 
 

Figure 2  Weighted and unweighted person 
projections  
 

 
 
As a benchmark, the number of person records of 
the unweighted (fully expanded) dataset is for all 
projection years set to 100%. The difference 

between the curve and the 100% line thus shows 
the ‘relative expansion’ of the weighted dataset at 
any moment in time. Figure 2 shows that the 

numbers of weighted person recorded, in the 
unrestricted projections using weighted SIHC 
data, rose quickly, and after 50 years were about 
99% of the unweighted numbers. Clearly, the 
efficiency gain that comes with the approach 
proposed in this paper is achieved in the first part 
of the simulation period. The more splitting up is 

required, the faster the marginal efficiency gain is 
reduced. The bottom line in Figure 2 reflects the 
development of the number of person records 
when moves of households between dwellings are 
not simulated, and additional splitting is thus 
avoided. In this case, expansion takes place at a 
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lower rate and the efficiency gain pertaining to 
using weights is therefore larger. 

5. CONCLUSIONS 

This short paper discusses the use of weights in 
dynamic microsimulation models with dynamic 
ageing, other than simply expanding the dataset. 
An alternative approach is presented, that treats 
the frequency weights as just another variable in 
the model. These weights are then used during 
simulation to derive weighted simulation results. 

This alternative strategy can give savings in 
runtimes and memory requirements, with the size 
of the savings depending on the circumstances.  
 
Tests using Australian data showed that 
microsimulations using weighted data, or 

unweighted data derived from weighted data, can 

give reasonable total population projections. With 
these test data, runtimes for microsimulations 
using weighted data are reduced by about 20% if 
moves of whole households are simulated, and by 
38% if such moves are not simulated. The 
marginal efficiency gain however decreases with 

the increase of the simulation period, and this 
reduction pertains to the amount of splitting 
required. The efficiency gain is therefore limited to 
the first few decades. 
 
Finally, the consequences of using weights in the 
case of alignment are discussed. This paper 

proposes three ways in which alignment can take 
weights into account, and gives test results with 

two of these methods. Using either of the two 
strategies tested gave good alignment with 
marginal increases in runtimes. 
 
Efficiency and memory gains may be quickly lost 

due to (a) “splitting” in a complex environment (a 
simulation with many different events happening), 
(b) a long duration simulation, (c) a simulation in 
which there is detailed, disaggregated alignment 
or (d) a combination of the above. 
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