
INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32

INTERNATIONAL MICROSIMULATION ASSOCIATION

The MicSim Package of R: An Entry-Level Toolkit

for Continuous-Time Microsimulation

Sabine Zinn

Max Planck Institute for Demographic Research
Rostock, Germany

Leibniz Institute for Educational Trajectories
Bamberg, Germany
sabine.zinn@lifbi.de

ABSTRACT: High entry barriers might discourage many social scientists from using existing

microsimulation software. This article presents the functionality and capabilities of the free and

open source R package MicSim which allows performing continuous-time microsimulation at a

very fine-grained level from a low level entry point. Hence, the package might also be of interest

to people who are new to R. The package implements a generic microsimulation model for a

wide range of demographic applications. Its central device is the individual life-course, which is

defined by the sequence of states the individual visits over time and the intervals between the

transitions from one state to another. The MicSim model is by design a discrete-event simulation

model in which a demographic event implies a change in the state of an individual. The

considered population is open and life-courses are specified to evolve along three continuous

time scales: individual age, calendar time, and the time that an individual has already spent in the

current state. The stochastic model of the microsimulation is parameterized with a base

population, transition rates, and (if applicable) a population of migrants. Besides stochastic

events, the package allows specifying deterministic events such as enrolment of children in

elementary school. Example applications illustrate the capabilities of the package.

KEYWORDS: microsimulation toolkit, continuous-time, discrete-event simulation, R package.

JEL classification: C53, C63, C41, J11

mailto:sabine.zinn@lifbi.de

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 4

1. INTRODUCTION

With steadily growing computer power, microsimulation techniques become increasingly relevant

in the social sciences, implying a rising demand of related software. Having, however, to write

new software for each new microsimulation application from scratch places enormous and

unnecessary burdens on researchers. Recently, researchers have responded to this obstacle by

following mainly two strategies. Either they have implemented microsimulation models by using

general simulation frameworks such as μsik (Perumalla, 2005; Onggo, 2010) and JAMES II

(Himmelspach, 2012) or they have used microsimulation toolkits especially designed for their

needs such as the microsimulation language Modgen (Statistics Canada, 2011) and the

microsimulation modelling policy tool JAMSIM (Mannion, 2014). (An extensive list of simulation

tools relevant in this context is given by, for example, Mannion et al. (2012).) Unfortunately, often

the value of simulation frameworks and microsimulation tools is hampered by being both very

complex and hard to use or by requiring prior expert knowledge of the software being used. A

further impediment of many existing software package is their restriction to specific settings and

sets of variables. Obviously, due to the complexity of the issue, an all-purpose simulation

standard tool for all kinds of conceivable simulation models and applications is not practicable.

Rather, the development of user-friendly and up-to-date microsimulation toolkits tailored to

specific areas seems to be the ideal solution. In demography, such toolkits exist, but commonly

they assume a certain level of expert knowledge in form of the specification language being used.

Thus, to many demographers the first hurdle to take might be too high. For example, the Mic-

Core is a continuous-time microsimulation tool for population projections (Zinn et al., 2009). It is

written in Java and makes use of the simulation framework JAMES II (Himmelspach, 2012). It

features an own graphical user interface and is very performant in terms of run times, allowing

for the simulation of thousands of life-courses within a few seconds. However, the Mic-Core

demands that the input data (i.e., the base population and the transition rates) are in a very special

format that some users might find hard to prepare. In addition, its output data come in a format

with which most social scientists are not familiar. For example, the Mic-Core reports birth times

and transition times in milliseconds since January 1, 1970.

In this article, we present an easy-to-use, free, and open source toolkit for continuous-time

microsimulation tailored to the needs of demographers. We describe the functionality and

capabilities of the R package MicSim1 (Zinn, 2014; R Development Core Team, 2013) which re-

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 5

implements and extends the model and simulation techniques of the Mic-Core. Compared to the

Mic-Core, the MicSim package enables a simplified specification of the microsimulation model

and of the input data. As R is becoming the software tool of choice for statistical analysis, it is

brimming with up-to-date statistical methods which are free and open source. Thus, the MicSim

package allows conducting data preparation and evaluation in a very sophisticated way by using

these methods. In addition, the MicSim package extends the functionality of the Mic-Core by

facilitating the modelling of a wider class of transition models. On the one hand, the package

relaxes the assumption of piecewise constant transition rates, which in the Mic-Core is essential.

That is, it allows transition rates to be defined by any parametric and nonparametric function. On

the other hand, the MicSim package allows transition rates to vary along age, calendar time, and

the time that an individual has already spent in the current state. (The Mic-Core determines

transition rates to vary only along age and calendar time.) In other words, all applications that can

be run with the Mic-Core can also be run with the MicSim package, but additionally the MicSim

package allows performing simulation runs relying on more complex transition models. The new

microsimulation toolkit can be downloaded from the R package database and used without

further ado. Thus, it is easily accessible and its implementation is traceable. However, not

employing Java and JAMES II for microsimulation has its price: opposed to the Mic-Core, the

microsimulation routines implemented in the MicSim package are not as performant in terms of

run times. The MicSim package addresses this problem by offering a function for distributed

computation.2

The topic of this paper is the generic microsimulation model of the MicSim package, and its

realization and application. The remainder of the paper is structured as follows. First, in Section

2, we shortly describe the generic microsimulation model that has been implemented, and explain

in detail how the functions of the MicSim package have to be specified to obtain viable

microsimulation models. All of the general descriptions presented are substantiated by excerpts

of two illustrative examples whose source code can be found in the example section of the help

page of the micSim function of the MicSim package3. The first (very simple) example deals with

gender-specific mortality. The second (more complex) example focuses on individual behaviour

concerning changes in marital status, educational attainment, and fertility status. The second

example also considers immigration and emigration. In order to better understand the

functionality of the package, we strongly recommend running the examples while reading the

paper4. In Section 3, we present the special features of the MicSim package: Specifically, we

demonstrate the simulation of the birth of offspring during the simulation, the modelling of

enrolment in elementary school, and procedures for following migrants. Then, in Section 4, we

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 6

show how to actually perform a continuous-time microsimulation, and we outline the structure of

its output. Finally, in Section 5, we provide some concluding remarks and ideas for possible

extensions of our package.

2. MICROSIMULATION MODEL

The MicSim package implements a demographic microsimulation model which comprises a

stochastic model of individual behaviour and a virtual population. The virtual population consists

of a set of individuals who are assigned to attributes which are considered demographically

relevant, such as sex, marital status, fertility status, and educational attainment. To each member

of the virtual population a birth date is assigned. Commonly, the virtual population resembles a

real population structure. It evolves over time as individuals experience demographic events

across their lifetimes. For reasons of feasibility, the MicSim microsimulation model is framed by a

simulation horizon; i.e., a simulation start date and a simulation end date, and a maximum age up

to which each life-course is followed. Modelling and simulating the life-courses of a

representative share of population members allows mapping population dynamics on a very

detailed scale. Despite the considerable regularity of demographic behaviour, the order- and age-

specific incidence of demographic events varies between individuals, and cannot be fully

explained by observable characteristics. Thus, in efforts to describe individual behaviour,

commonly a stochastic model is applied (Mayer & Tuma, 1990). The most common type of

stochastic model used is a continuous-time multi-state model (Andersen & Keiding, 2002;

Gampe & Zinn, 2007; Aalen et al., 2008). A multi-state model is a stochastic process that at any

point in time occupies one of a set of discrete states (Hougaard, 1999). In the microsimulation

model under consideration, these states form the state space. In the following, we describe

provide a succinct description of the components of the microsimulation model. In addition, we

show the required specifications of these components in the MicSim package.

2.1. The State Space

Generally, the state space is determined by the problem to be studied, but often it will at least

have “sex” as a basic demographic characteristic. It should be emphasized that, in a continuous-

time microsimulation model such as the one considered, age runs parallel to the process time;

that is, age evolves in continuous time and is not modelled by means of a discrete variable. In

other words, age is not part of the state space. One element always present in the state space is

“dead,” a risk to which each individual is always exposed5. In the terminology used in the MicSim

package, an individual’s state is a combined characteristic, given by the combination of several

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 7

attributes (if several attributes are considered). To simplify the description, we define so-called

state variables. All of the unique combinations of values of these state variables define the state

space. Table 1 shows an example comprising six state variables: sex, marital status, fertility status,

educational attainment, mortality, and emigration. Throughout this paper, we rely on extracts of

this example (whose full specification is part of the help page of the micSim function of the

MicSim package).

Table 1 Example state space: State variables and their corresponding values.
(Value labels, subsequently used, are given in parentheses)

State Variable Possible Values

Sex Female (f), male (m)

Marital status never married (NM), married (M), divorced (D), widowed (W)

Fertility status childless (0), one child (1), two children (2), three and more children (3+)

educational attainment no education (no), primary education only (low), lower secondary school (med),

upper secondary or tertiary education (high)

Mortality Alive, dead (dead)

Emigration Not emigrated, emigrated (rest)

For example, (female, married, childless, lower secondary school) is one potential state in this state space.

Exceptions to this rule are the attributes “alive” and “not emigrated,” which are not explicitly

listed for obvious reasons; and the attributes “dead” and “emigrated,” which themselves denote

states. “Dead” and “emigrated” are both absorbing states that, once they have been entered, will

never be left again. All of the other states are nonabsorbing; they can, at least potentially, be left

again6.

The MicSim package requires the specification of the nonabsorbing states of the state space in

the form of a data frame. Each column of this data frame defines one state variable, and each

row gives one potential nonabsorbing state. Hence, in sum, the data frame comprises as many

rows as unique combinations of nonabsorbing values of state variables exist. All of the state

variables considered, as well as the accordant value labels, have to be provided by the user. The

only exception is sex, which is predefined by the labels “m” and “f,” indicating male and female

individuals. Furthermore, the label values “no” and “low” are reserved for enrolment in

elementary school (see Section 3.2). The simplest state space that the MicSim package can handle

has only sex as a state variable. (The full specification of the accordant working example is also

given in the help page of the micSim function of the MicSim package).

 R> sex <- c("m", "f")
 R> stateSpace <- sex
 R> attr(stateSpace, "name") <- "sex"

Here and in the subsequent, the prefix R> denotes a command to R. Line breaks within

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 8

commands are marked by the sign +. The user should be aware that for further processing,

MicSim requires a name for each state variable. Names are created by assigning an accordant

attribute to stateSpace. The following command determines the (nonabsorbing) states of the

example state space given in Table 1.

 R> sex <- c("m", "f")
 R> fert <- c("0", "1", "2", "3+")
 R> marital <- c("NM", "M", "D", "W")
 R> edu <- c("no", "low", "med", "high")
 R> stateSpace <- expand.grid(sex = sex, fert = fert,
 + marital = marital, edu = edu)

At this point, the R function expand.grid (part of the basic configuration of R) helps in

building up the state space by creating a data frame from all of the combinations of the values of

the supplied vectors. Absorbing states have to be given as strings, such as “dead” for being dead

or “rest” for having emigrated. They are specified by means of a vector named absStates.

 R> absStates <- c("dead", "rest")

If out-migration of the population is not considered, absStates reduces to

 R> absStates <- "dead"

2.2. Simulation Horizon and Maximum Age

Each simulation model demands the specification of a simulation start date, as well as a

simulation end date. Furthermore, the maximum age to which the life-courses are followed has to

be determined. In the MicSim package, the simulation horizon is set using the function

setSimHorizon. This function has two arguments: the simulation start date and the simulation

end date. Both have to be given as strings of the format “dd/mm/yyyy;” for instance,

 R> simHorizon <- setSimHorizon(startDate = "01/01/2000",
 + endDate = "31/12/2050")

The maximum age up to which individuals are followed is determined by the scalar maxAge and

has to be an integer number of years; for example,

 R> maxAge <- 100

2.3. The Virtual Population

The virtual population consists of all of the individuals who are considered during the simulation.

It can be regarded as a longitudinal sample from a synthetically constructed population that

resembles a real one. Each individual enters the virtual population in a state that is an element of

the state space. Usually, there are three possibilities for becoming part of the virtual population:

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 9

1. by being a member of the base population at the simulation start date,

2. by birth during simulation, or

3. by immigration during simulation (if the model includes immigration into the population).

The base population comprises information about the distribution of individuals according to

birth dates and to the states they occupy at simulation start date. This information has to be given

by the user. MicSim expects the base population to be provided in form of a data frame. Each

row of the data frame corresponds to one individual with the following information: a unique

numerical person identifier (ID), a birth date (birthDate), and an initial state (initState);

that is, the state occupied by the individual when entering the virtual population. Birth dates have

to be chron objects. Initial states are given in the form of composites of the labels of the values

of the state variables previously specified when defining the state space. Within each initial state

the ordering of the state variables has to be equivalent to the ordering determined when defining

the state space. Within states, labels are separated by a forward slash “/”. We illustrate the

composition of an initial population using a very simple setting with only five individuals who are

distinguished only by their gender and their birth date7

 R> dts <- c("31/12/1930", "03/04/1999", "15/10/1956",
 + "11/11/1991", "01/01/1965")
 R> birthDates <- chron(dates = dts, format =
 c(dates = "d/m/Y"))
 R> initStates <- c("f", "m", "f", "m", "m")
 R> initPop <- data.frame(ID = 1:5, birthDate = birthDates,
 + initState = initStates, stringsAsFactors = FALSE)

(Here, we have to be careful to ensure that R does not convert strings into factors when

constructing the data frame, by using the command stringsAsFactors = FALSE.)

We yield the following base population:

 ID birthDate initState
 1 31/12/30 f
 2 03/04/99 m
 3 15/10/56 f
 4 11/11/91 m
 5 01/01/65 m

To yield meaningful population projections, it is generally advisable to use census data or data of

representative cross sections to construct base populations.

If the microsimulation model considered assumes female fertility resulting in offspring (see

Section 3.1), newborns might enter the virtual population over the course of the simulation

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 10

period. These newborns also have to be assigned to the state space. Obviously, most states do

not apply, as newborns are always childless, have no education, and so on. In order to determine

those states that can actually be initial states of newborns (denoted as initStates), according

occurrence probabilities need to be defined. Newborns are then randomly assigned

corresponding to these states according to their occurrence probabilities8. Usually, simulation

models that allow for the creation of newborns employ an empirical sex ratio (the number of

male newborns relative to the number of female newborns) to determine a newborn’s sex. This

has to be taken into account when setting the occurrence probabilities of the possible

initStates. An example is the subsequent setting for the example state space of Table 1.

 R> initStates <- rbind(c("m", "0", "NM", "no"),
 + c("f", "0", "NM", "no"))
 R> initStatesProb <- c(0.517, 0.483)

Here, we assume a sex ratio of 51.7 male newborns to 48.3 female newborns, as well as (male,

never married, childless, no education) as the initial state for male newborns and (female, never married,

childless, no education) as the initial state for female newborns. By default, MicSim states that

initStates = c() and initStatesProb = c(); that is, if not specified otherwise, it

assumes that along simulation time no newborns enter the virtual population.

The microsimulation model of MicSim is per se an open population model; that is, it allows for

immigration. Immigrants have to be assigned to the state space when entering the virtual

population. Furthermore, for each migrant a birth date has to be given. As in the case of the base

population, information about immigrants has to be given in the form of a data frame

(immigrPop). Each row of the data frame corresponds to one immigrant. The data frame

immigrPop has to contain the following data: a unique numerical person identifier (ID), an

immigration date (immigrDate), a birth date (birthDate), and an initial state

(immigrInitState); that is, the state occupied by the immigrant when entering the virtual

population. Immigration dates and birth dates have to be chron objects. Coming back to our

example of Table 1, a potential set of migrants could be defined by

 ID immigrDate birthDate immigrInitState
 10001 11/Mar/2027 10/Mar/1981 m/1/NM/low
 10002 25/Apr/2021 09/Mar/1973 f/1/W/low
 10003 19/Jan/2032 29/Dec/2013 m/0/NM/no
 10004 15/Jul/2024 12/Aug/1989 f/0/M/high
 10005 15/May/2017 23/Nov/1991 m/1/D/med
 10006 20/Jan/2014 16/Sep/1964 m/3+/M/high
 ...

It is important to note that numerical person identifiers have to be unique. Hence, IDs for

migrants are given depending on the size of the base population. If, for example, we have a base

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 11

population of size N=10000, then the first ID that can be given to a migrant is 10001. As in the

base population definition, the initial states of migrants have to be strings (not factors). By

default, the MicSim package does not assume immigration into the virtual population; that is,

immigrPop = NULL. The generic model of MicSim allows for following migrants once they

have entered the virtual population. The respective processing is described in Section 3.3.

Individuals can leave the population either by death or by emigration (if emigration is allowed).

MicSim handles both types of events by asking for accordant transition rates; see Section 2.3.4.

In its current version, the MicSim package does not require the base population and the data on

immigrants to include any information about the amount of time individuals have already spent

in their initial states. Such a setting is appropriate if we assume that the waiting times already

spent in the initial states do not affect any upcoming events. Nonetheless, the situation is

different if we assume state duration dependence; that is, if we employ semi-Markov processes to

describe individual behaviour (cp. Section 2.4.1). Here, it is usually incorrect to simply ignore the

length of time individuals have already spent in their current states when entering the virtual

population. A failure to take this time period into account might lead to a distortion of the

duration effects when determining the first events of members of the base population and of

immigrants. We will return to this issue in our conclusion when we elaborate on the work in

progress and list further possible extensions of the MicSim package.

2.4. Stochastic Model of Individual Behavior

2.4.1. Modeling Life-Course Events Over Age, Calendar Time, and Time Elapsed

In a continuous-time microsimulation such as the one considered in the MicSim package,

individual life-courses are usually specified by sequences of state transitions (events) and the time

spans between these transitions. A common way to characterize an individual life-course is by

means of a continuous-time multi-state model; that is, an individual life-course is described by a

stochastic process Z(t), +∈ 0Rt , usually from the family of Markovian processes (Kijima, 1997).

Here, the process time t maps the time span over which we “observe” an individual life-course.

The time t is set to zero when an individual enters the virtual population. As long as the

individual is part of the virtual population, t evolves along the individual lifetime. Individual age

and calendar time are simple translations of the process time. Figure 1 shows a part of a potential

synthetic life-course.

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 12

Figure 1 Sketch of a life-course of a male who is part of the initial population on January 1, 2000.
At this time he is a=10.9 years old, never married, and childless. On May 5, 2013, 13.3
years after he had entered the virtual population, he marries; and after 19.6 years he
becomes father for the first time

For many situations, it is feasible to assume that the propensity of an individual to change his/her

current state depends only on his/her age, and possibly also on the calendar time. This applies,

for example, to first birth events. However, some applications require the consideration of an

additional third time scale: namely, the amount of time an individual has already spent in the

current state. For example, the divorce risk strongly depends on the amount of time that has

elapsed since the wedding (Becker et al., 1977; Diekmann & Schmidheiny, 2008) while the

propensity to give birth to a second child depends on the amount of time that has elapsed since

the delivery of the first child (Neyer & Andersson, 2008). To meet this need, the MicSim package

allows life-course transitions hinging on age, calendar time, and also on the time already spent in

a state. If life-course transitions are determined to depend on age or on age and calendar time,

Z(t) can be described by a non-homogeneous continuous-time Markov process. If the user also

assumes a dependence on the “time that has elapsed since the last event,” a non-homogeneous

semi-Markov process must be used instead (Monteiro et al., 2006). Transition rates describing the

propensity to leave a state to enter another one are the key quantities of the kind of stochastic

processes. Once they are known, one can compute the distribution functions of the waiting times

in the distinct states of the state space, and thus random variates of (latent) waiting times to next

events. Since the microsimulation model implemented in the MicSim package specifies life-

courses as sequences of waiting times to the next event, these random waiting time variates are its

building blocks. A comprehensive and detailed documentation of how to derive from transition

rates waiting time variates and from them synthetic life-courses is given in great detail elsewhere,

see, for example, Zinn (2011, Chapter 2.3). We refer the interested reader to this literature.

In the MicSim package, life-courses can be described using non-homogeneous continuous-time

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 13

Markov processes and non-homogeneous semi-Markov processes in combination; that is,

different types of life-course events can be specified by either one or the other model type. For

example, as a next event, a married woman with one child might either experience a divorce or

become mother again or die. A different stochastic model might apply to each of these events.

Concretely, the divorce risk and the propensity of giving birth to a second child can properly be

explained by non-homogeneous semi-Markov processes, whereas mortality can be mapped by a

non-homogeneous continuous-time Markov process. Once the user has figured out for a specific

application the best models to use, that information and the corresponding transition rates have

to be entered into MicSim. The process for doing this is the topic of the next section.

Note that in MicSim the life-course of an individual is censored at simulation end date if

simulation stop date has been reached before the individual has died or emigrated.

2.4.2. Specifying Models for Life-Course Events in MicSim

Before life-courses can be constructed, the transition pattern applied during simulation has to be

detailed. In other words, the user has to provide MicSim with information about the events that

should be considered. The MicSim package requires two types of information: first, for all events

and time scales along which dependency is assumed, functions of transition rates have to be

defined; and, second, a transition matrix has to be determined which indicates when which

transition rates function applies.

Transition rates functions

All of the transition rates have to be provided in form of R functions; that is, for each transition

considered during the simulation, the user has to specify a corresponding transition rates

function. By convention, a transition rates function might apply to distinct types of events; for

example, a function describing non-parity specific fertility rates applies to all parity-specific birth

events. The naming of the transition rates functions is up to the user. Each transition rates

function has to feature three numerical input arguments: age, calTime, and duration. Via

age the age of an individual is provided, via calTime the calendar time is entered, and via

duration the time that has been elapsed since the last transition is provided. Not all of the

input parameters have to affect the result of the transition rates function (also only one or two

input parameters can affect the result). The user can also specify that none of the input

parameters affects the result of the transition rates function; that is, a transition rate can be

defined as being constant. This depends on the stochastic model assumed for an event. If the

rates are assumed to be independent of a specific time scale, the corresponding input argument

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 14

can simply be ignored within the body of the function when determining the specific rate values.

All of the input arguments have to be given in decimal years. It should be noted that the time

elapsed is measured starting from the last change in the state variable affected; that is, if a

transition rates function describes the propensity for a second birth, duration marks the time

since the first birth. For example, the transition rates among women of giving birth to a second

child could be assumed to follow the Hadwiger mixture model (Chandola et al., 1999):

 R> fert2Rates <- function(age, calTime, duration){
 + b <- ifelse(calTime <= 2020, 6.0, 5.7)
 + c <- ifelse(calTime <= 2020, 32, 33)
 + rate <- (b / c) * (c / age) ^ (3 / 2) *
 + exp(- b ^ 2 * (c / age + age / c - 2))
 + rate[age <= 15 | age >= 45 | duration < 0.75] <- 0
 + return(rate)
 + }

Here, the transition rates to giving birth to a second child are defined such that they vary with

age, calendar time, and the time elapsed since first birth. The function returns zero for a time

period of 0.75 years after the first birth. Thus, it accounts for the time range when a woman is

pregnant. Furthermore, the function fert2Rates defines that women younger than age 16 and

older than age 44 cannot have a (further) child. To describe age- and calendar time-dependent

mortality rates, we might use the Gompertz model, parameterized to vary with age, and for

periods before the year 2020 and after that year. Since we measure the duration in a state starting

from the last change in the state variable affected, any kind of duration dependence of the

mortality process is already described by its age dependence. (In other words, age is the time

already spent in the “alive state.”) Hence, the duration argument is not used when computing the

mortality rates.

 R> mortRates <- function(age, calTime, duration){
 + a <- 0.00003
 + b <- ifelse(calTime <= 2020, 0.1, 0.097)
 + rate <- a * exp(b * age)
 + return(rate)
 + }

To ensure viable simulation results, every transition rates function has to return feasible values, at

least for the considered simulation horizon and for all ages ranging from zero to the maximum

age specified. All of the transition rates functions specified have to handle vectors of input

values.9 This is the case with most R functions, and should not cause any problems. A special

feature of the MicSim package is that it is able to handle deterministic events which occur with

the probability of one at predetermined (whole numbered) ages, calendar years, or duration

spans. This is achieved by setting the accordant transition rate(s) to infinity. For instance, we

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 15

determine that every child will certainly enter elementary school in the year when he/she turns

seven years old. The respective transition rates function may then be defined as follows:

 R> noToLowEduRates <- function(age, calTime, duration){
 + rate <- ifelse(age == 7, Inf, 0)
 + return(rate)
 + }

This function returns infinity for age seven, and zero otherwise. It does not depend on calendar

time nor on the time elapsed in a state. If for one specific transition deterministic events have

been defined to happen at several points in time (e.g., at age seven, age 20, and age 50), MicSim

chooses the earliest of these events.

Transition matrix

After having defined transition rates functions for all events of interest, the user has to specify

the transition pattern to which they apply. For this purpose, a transition matrix (denoted as

transitionMatrix) has to be constructed which indicates the possible (and impossible)

transitions between the states of the state space, as well as the names of the functions

determining the respective events. The transition matrix consists of as many rows as the state

space contains states, and of as many columns as the state space contains states, plus the number

of absorbing states defined. Since dying is a competing risk to which all individuals are always

exposed, it mandatorily comprises a minimum of one absorbing state (namely, “dead”), and a

maximum of two absorbing states if “emigrated” is also considered. By definition, the rows of

the transition matrix correspond to the states in which the transitions start, and the columns

correspond to the states in which the transitions end. We illustrate the design of the transition

matrix by means of our simple mortality example that includes only two state variables: sex and

mortality. The accordant state space is defined as

 R> sex <- c("m", "f")
 R> stateSpace <- sex
 R> attr(stateSpace, "name") <- "sex"
 R> absStates <- "dead"

Here, we determine that transitions are only possible to dead; that is, this example does not

include any transitions between nonabsorbing states. The MicSim package contains the function

buildTransitionMatrix, which helps the user construct the transition matrix. The function

has three input arguments: allTransitions, absTransitions, and stateSpace.

Obviously, the argument stateSpace comprises the nonabsorbing states of the state space of

the microsimulation application. Its definition is extensively described in Section 2.1. The input

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 16

matrix allTransitions consists of all of the possible transitions between values of state

variables (which are not “dead” or “emigrated”) in the first column and in the second column it

contains the names of the functions that define the corresponding transition rates. Likewise, the

matrix absTransitions contains the names of the absorbing states which individuals are

exposed to (i.e., “dead” for being dead or “rest” for emigrated) in the first column, and the

names of the functions defining the corresponding transition rates in the second column. By

means of buildTransitionMatrix, we can define the transition matrix of our simple

example as follows.

 R> absTransitions <- c("dead", "mortRates")
 R> transitionMatrix <- buildTransitionMatrix(
 + allTransitions = NULL, absTransitions =
 + absTransitions, stateSpace = stateSpace)

Here, allTransitions is set to NULL because our simple example only includes transitions to

“dead.” To absTransitions a vector is assigned which indicates that the (user-defined)

function mortRates describes all of the mortality rates. Hence, in sum, we yield the subsequent

transition matrix. (The character “0” marks impossible transitions.)

 m f dead
 m "0" "0" "mortRates"
 f "0" "0" "mortRates"

For further illustration, let us consider a slightly more complicated example involving the three

state variables sex, being partnered, and mortality. Being partnered takes the two values “being

alone” (labeled as “A”) and “being partnered” (labeled as “P”). The corresponding state space is

given by

 R> sex <- c("m", "f")
 R> partnered <- c("A", "P")
 R> stateSpace <- expand.grid(sex = sex, partnered =
 + partnered)
 R> absStates <- "dead"

We are interested in partnership formation and dissolution events; that is, in the transitions

between “A” and “P.” Furthermore, all of the individuals are always exposed to the risk of dying.

In this example, for all of the events we assume distinct transition rates for females and males.

We construct the corresponding transition matrix using the function

buildTransitionMatrix. The specification of stateSpace is as described. As was already

stated, the matrix allTransitions determines the transitions originating from nonabsorbing

states in its first column, and the corresponding transition rates functions in its second column.

Each element of its first column has to be of the form “X->Y,” with “X” indicating the starting

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 17

value of a transition and “Y” indicating the arrival value. The character -> is the placeholder

defined as marking a transition. For example, “A” describes the starting value of a partnership

formation event and “P” describes its arrival value. (Clearly, all of the value labels used have to be

identical to the value labels of the state variables specifying the simulation model.) In the example

considered, we assume that all of the transition rates depend on the value of another state

variable; namely, on the value of sex. The buildTransitionMatrix function allows us to

use such a setting in a straightforward way, as it facilitates the specification of transitions that

depend on one or more state variables. Therefore, the starting value and the arrival value of a

transition have to be specified as a combination of the considered attributes, separated by a

forward slash and in accordance with the ordering of the state variables in the state space. For

example, “f/A->f/P” describes a female specific transition from “A” to “P.” For absorbing

states, a prefix indicates the attributes on which a transition is assumed to depend (also separated

by a forward slash), for example, “f/dead” and “m/dead” describe gender-specific mortality

transitions. Thus, the input matrices allTransitions and absTransitions can be defined

as follows:

 R> trMatrix_f <- cbind(c("f/A->f/P", "f/P->f/A"),
 + c("rates1", "rates2"))
 R> trMatrix_m <- cbind(c("m/A->m/P", "m/P->m/A"),
 + c("rates3", "rates4"))
 R> allTransitions <- rbind(trMatrix_f, trMatrix_m)
 R> absTransitions <- rbind(c("f/dead", "mortRates_f"),
 + c("m/dead", "mortRates_m"))

Here, rates1, rates2, rates3, and rates4 indicate (where applicable) the transition rate

functions related to partnership formation and dissolution, and mortRates_f and

mortRates_m give gender-specific mortality rates. Hence, for allTransitions we obtain

 [1,] "f/A->f/P" "rates1"
 [2,] "f/P->f/A" "rates2"
 [3,] "m/A->m/P" "rates3"
 [4,] "m/P->m/A" "rates4"

and for absTransitions we get

 [,1] [,2]
 [1,] "f/dead" "mortRates_f"
 [2,] "m/dead" "mortRates_m"

All in all, we obtain the corresponding transition matrix by

 R> transitionMatrix <- buildTransitionMatrix(
 + allTransitions = allTransitions, absTransitions =
 + absTransitions, stateSpace = stateSpace)

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 18

that is, the transitionMatrix is

 m/A f/A m/P f/P dead
 m/A "0" "0" "rates3" "0" "mortRates_m"
 f/A "0" "0" "0" "rates1" "mortRates_f"
 m/P "rates4" "0" "0" "0" "mortRates_m"
 f/P "0" "rates2" "0" "0" "mortRates_f"

3. SPECIAL FEATURES OF MICSIM

The base population, the transition matrix, and the corresponding transition rates functions are

mandatory ingredients for conducting a microsimulation run. The inclusion of migration, the

creation of newborns during the simulation, and enrollment in elementary school is optional.

This section deals with the specification of these extra options

3.1. Simulating Offspring

In the MicSim package, the user decides whether female fertility results in offspring. For this

purpose, an accordant vector (denoted as fertTr) has to be specified marking all of the

transitions triggering a childbirth event during simulation; that is, the creation of a new individual.

Obviously, such transitions have to be in accordance with the state space and the previously

defined transition pattern. Consider, for example, the following state space comprising sex and

fertility:

 R> sex <- "f"
 R> fert <- c("0", "1+")
 R> stateSpace <- expand.grid(sex = sex, fert = fert)
 R> absStates <- "dead"

The state variable “sex” takes only the value female (labeled “f”), and the state variable fert

maps being childless (labeled “0”) and being mother (labeled “1+”). The corresponding

transition matrix is defined as:

 R> allTransitions <- cbind(c("0->1+", "1+->1+"),
 + c("fertRates1", "fertRates2"))
 R> absTransitions <- c("dead", "mortRates")
 R> transitionMatrix <- buildTransitionMatrix(
 + allTransitions = allTransitions, absTransitions =
 + absTransitions, stateSpace = stateSpace)

On that, we define that during simulation transitions of the type “0→1+” and “1+→1+” imply

newborns.

 R> fertTr <- c("0->1+","1+->1+")

Once the microsimulation yields a newborn, he/she has to be assigned to the state space. The

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 19

process MicSim employs to do this is detailed in Section 2.3. Ultimately, it is left to the user to

determine the possible initial states of newborns and their occurrence probabilities

(initStates and initStatesProb). As a default, the MicSim package does not account for

any offspring; i.e., fertTr = c(), initStates = c(), initStatesProb = c().

3.2. Enrolment in Elementary School

If the state space includes educational achievement and if individuals of the relevant age are

simulated, it may be necessary to model the enrolment of children in elementary school. The

MicSim package is able to take into account enrolment events that take place on a general

enrolment date (denoted as dateSchoolEnrol) of a particular year. For this purpose, first a

state variable defining educational attainment has to be created. Then, labels of possible values

have to be defined, with “no” describing no education and “low” describing elementary

education. The general enrolment date is set via dateSchoolEnrol using a string of the form

“month/day,” for example, “09/13” for September 13. The default setting is “09/01.” Finally,

the transition function determining the transition rate for the respective enrolment event has to

be defined to return Inf for the age x at which children should be enrolled (e.g., at age seven),

and zero otherwise. In this way, an event “school enrolment on dateSchoolEnrol of the year

in which a child turns x years old” is determined.

 R> sex <- c("m", "f")
 R> edu <- c("no", "low")
 R> stateSpace <- expand.grid(sex = sex, edu = edu)
 R> absStates <- "dead"

 R> dateSchoolEnrol <- "09/01"
 R> noToLowEduRates <- function(age, calTime, duration){
 + rate <- ifelse(age == 7, Inf, 0)
 + return(rate)
 + }

 R> allTransitions <- matrix(c("no->low",
 + "noToLowEduRates"), nrow = 1)
 R> absTransitions <- c("dead", "mortRates")
 R> transitionMatrix <- buildTransitionMatrix(
 + allTransitions = allTransitions, absTransitions =
 absTransitions, stateSpace = stateSpace)

Generally, it is completely up to the user how to define changes in the educational achievement.

As described, enrolment to elementary school can be modelled to happen on a pre-defined

general enrolment date at a certain age. Alternatively, it can be modelled to happen, for example,

in a certain (whole numbered) year or even completely at random. In the latter cases, the user has

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 20

simply to choose labels others than “no” and “low” to describe enrolment to elementary school,

set dateSchoolEnrol=c(), and to determine the related transition rates functions accordingly

(cp. Section 2.4.2).

3.3. Following Migrants

The MicSim package also offers the option of allowing immigrants to enter the virtual population

during simulation. In Section 2.3, we describe in detail how migration data have to be prepared so

that MicSim can process them. After migrants have entered the virtual population, the user might

be interested in following them. The generic model of MicSim can easily cope with such a

demand. The user simply has to specify a state variable called “being a migrant,” with a value that

indicates whether an individual is a migrant. When entering the virtual population, the respective

state value is then assigned according to the migration status of an individual. For example, the

state (male, divorced, childless, high education, being migrant) describes a childless, divorced man with a

high level of education who is flagged as being a migrant when entering the virtual population by

immigration. Once a migrant is assumed to be assimilated into the population of immigration

his/her status changes to “not being a migrant.” For this purpose, only an accordant transition

rate has to be defined. For example, five years after migration, the probability that a migrant will

behave like a native is assumed to be one. By its very nature, such an event is similar to an

enrolment event into elementary school (cp. Section 3.2), and thus has to be defined accordingly:

namely, a transition rate is defined as being equal to infinity for a duration of stay that is five

years or longer. An excerpt of the related source code is given in the subsequent. The whole

example can be found in the appendix.

 R> migrant <- c("mig", "notMig")
 R> stateSpace <- expand.grid(sex = sex, migrant = migrant)

 R> migToNotMigRates <- function(age, calTime, duration){
 + rate <- ifelse(duration >= 5, Inf, 0)
 + return(rate)
 + }

 R> allTransitions <- matrix(c("mig->notMig",
 + "migToNotMigRates"), nrow = 1)

4. CONDUCTING MICROSIMULATION AND OUTPUT

After having defined

• the base population initPop,

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 21

• the maximum age maxAge,

• the simulation horizon simHorizon,

• the state space of nonabsorbing states stateSpace,

• the set of absorbing states absStates, and

• the transition rates functions and the accordant transition pattern (reported by means of

the transition matrix; transitionMatrix),

and, optionally also

• data on migrants immigrPop,

• transitions leading to offspring fertTr, and

• a general date of enrolment to elementary school dateSchoolEnrol,

the MicSim package has been provided with all of the information required to perform a

microsimulation run. For this purpose, the package offers two functions. The function micSim

conducts microsimulation using one single CPU core. In terms of run times, this is not a very

performant solution, especially today when most computers are equipped with CPUs with more

than one core. The function micSimParallel performs microsimulation making use of as

many cores as the user specifies. Of course, the number is restricted by the maximum number of

cores a computer (or a computer cluster) has. When conducting any kind of simulation, one

should always pay special attention to the pseudo random number generator (PRNG). By default,

R uses the Mersenne Twister, which is based on a matrix linear recurrence over a finite binary

field (Matsumoto & Nishimura, 1997). The MicSim package relies on the positive qualities of the

Mersenne Twister, and applies it for microsimulation. To ensure that the results are replicable

and are therefore reasonable, the user should always assign a seed to each PRNG representation

used. Thus, for each core accessed, MicSim asks for a seed. When running the microsimulation

on a single core, we define the seed by means of the set.seed function before calling the actual

microsimulation function micSim.

 R> set.seed(234)
 R> pop <- micSim(initPop = initPop, transitionMatrix =
 + transitionMatrix, absStates = absStates, maxAge =
 + maxAge, simHorizon = simHorizon)

Alternatively, if immigration, offspring born during the simulation, and enrolment in elementary

school are also considered, the following command conducts a single-core microsimulation run:

 R> set.seed(234)
 R> pop <- micSim(initPop = initPop, immigrPop = immigrPop,
 + transitionMatrix = transitionMatrix, absStates =

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 22

 + absStates, initStates = initStates, initStatesProb =
 + initStatesProb, maxAge = maxAge, simHorizon =
 + simHorizon, fertTr = fertTr, dateSchoolEnrol =
 + dateSchoolEnrol)

In the multicore specification, we enter a set of seeds via the input arguments of

micSimParallel. An accordant example is given in the appendix.

The output object pop of micSim and micSimParallel is a data frame that contains the

whole synthetic population considered during the simulation, including all of the events

generated; that is, the pop object contains as many rows as there are transitions performed by the

individuals of the virtual population. (“Entering the virtual population” is also considered as an

event.) For the example focusing on individual behaviour concerning changes in marital status,

educational attainment, and fertility status (The accordant state space is described in Section 2.3.)

and the simulation horizon from January 1, 2014, to December, 31, 2050, we get the following

output:

 ID birthDate initState From To transitionTime transitionAge
 1 25/Feb/1968 f/3+/NM/med f/3+/NM/med f/3+/M/med 29/Jul/2018 50.43
 1 25/Feb/1968 f/3+/NM/med f/3+/M/med dead 30/Apr/2049 81.18
 2 09/Jun/1984 m/3+/M/high m/3+/M/high m/3+/D/high 07/Apr/2023 38.83
 2 09/Jun/1984 m/3+/M/high m/3+/D/high m/3+/M/high 21/Feb/2024 39.70
 3 06/Oct/1989 f/2/D/med f/2/D/med f/3+/D/med 13/Jul/2015 25.77
 3 06/Oct/1989 f/2/D/med f/3+/D/med f/3+/D/med 29/Mar/2020 30.48
 3 06/Oct/1989 f/2/D/med f/3+/D/med f/3+/D/med 05/Sep/2020 30.92
 3 06/Oct/1989 f/2/D/med f/3+/D/med f/3+/D/med 25/Jan/2021 31.31
 ...
15299 06/Dec/2050 m/0/NM/no <NA> <NA> <NA> NA
15300 23/Dec/2050 f/0/NM/no <NA> <NA> <NA> NA

The column ID gives the unique numerical person identifiers, the column birthDate gives the

birth dates of the individuals, and the column initState gives the states the individuals were in

when they entered the virtual population. The columns From and To mark the transitions the

individuals experienced during the simulation. From gives the states of origin and To gives the

states of destination. The columns transitionTime and transitionAge document the

corresponding transition dates and ages. In the example given, the individual with ID=1 is a

female born on February, 25, 1968, who enters the virtual population by being part of the base

population. At simulation starting time she is a never married woman with a lower secondary

education and mother of three or more children. She marries on July 29, 2018 at age 50.43. On

April 30, 2049 at age 81.18 she dies. The two individuals shown at the end of the example are

born during the simulation; namely, on December 6, 2050 and on December 23, 2050. Apart

from their birth, no further events are simulated up to the end point of the simulation, as

indicated by the <NA> and NA entries in the respective lines. Generally, micSim and

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 23

micSimParallel return all of the birth dates and the transition dates in the form of chron

objects.

To ease further processing, the MicSim package provides a function that reshapes the

microsimulation output into a long format that might be more familiar to people working with

event data. That function, called convertToLongFormat, transforms the microsimulation

output into a dataset with one row for each episode which an individual experiences.10 The

function convertToLongFormat contains two input arguments: the output object of micSim

or micSimParallel and an indicator variable marking whether the simulation model

considered immigration (the default setting is “no immigration considered”).

 R> convertToLongFormat(pop, migr = TRUE)

By means of the example given above, we detail the output of the function

convertToLongFormat.

ID birthDate Tstart Tstop status status OD ns Epi sex fert mar edu
 Entry Exit sode ital
1 25/Feb/1968 01/Jan/2014 29/Jul/2018 0 1 NM->M 2 1 f 3+ NM med
1 25/Feb/1968 29/Jul/2018 30/Apr/2049 1 1 dead 2 2 f 3+ M med
2 09/Jun/1984 01/Jan/2014 07/Apr/2023 0 1 M->D 3 1 m 3+ M high
2 09/Jun/1984 07/Apr/2023 21/Feb/2024 1 1 D->M 3 2 m 3+ D high
2 09/Jun/1984 21/Feb/2024 31/Dec/2050 1 0 cens 3 3 m 3+ M high
3 06/Oct/1989 01/Jan/2014 13/Jul/2015 0 1 2->3+ 10 1 f 2 D med
3 06/Oct/1989 13/Jul/2015 29/Mar/2020 1 1 3+->3+ 10 2 f 3+ D med
3 06/Oct/1989 29/Mar/2020 05/Sep/2020 1 1 3+->3+ 10 3 f 3+ D med
...
15299 06/Dec/2050 <NA> 31/Dec/2050 1 0 cens 1 1 m 0 NM no
15300 23/Dec/2050 <NA> 31/Dec/2050 1 0 cens 1 1 f 0 NM no

The first column gives the unique numerical person identifier ID and the second column gives

the birth date of an individual. The variables Tstart and Tstop mark the start and the end

dates of episodes. The column statusEntry specifies whether the entry into an episode has

been observed. The value “1” marks an observed entry, and the value “0” marks a left-truncated

episode. Likewise, the column statusExit specifies whether the episode was completed by a

transition between two states or by right-censoring. Value “1” indicates a transition and value “0”

indicates a censoring event. The column OD identifies the transition which completed an episode.

Here, right-censoring is marked by “cens.” The column ns gives the number of episodes an

individual has passed and the column Episode enumerates these episodes. The last columns of

the data frame contain for each individual and episode the values of the state variables during

that episode, such as “sex,” or “education.”

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 24

5. CONCLUSION

The R package MicSim performs continuous-time microsimulations for population projection.

Its key ingredients are the virtual population and a stochastic model describing life-course

dynamics. The virtual population maps the composition and the development of the population

under study along simulation time. To each individual who is part of the virtual population, a set

of demographically relevant attributes is assigned. These attributes may change along the

simulation time span. To describe life-course dynamics, stochastic models are usually applied.

The MicSim package implements two classes of stochastic models: non-homogeneous

continuous-time Markov processes and non-homogeneous semi-Markov processes. The first

class of models specifies life-course events over age and calendar time. The second class of

models also postulate duration dependence; that is, it assumes that the propensity of an individual

to change his/her current set of attributes may depend not only on his/her age and on calendar

time, but also on the amount of time elapsed since a last transition. Thus, the MicSim package is

able to cover a wide range of situations relevant for demographic population projections. A

further useful feature of the MicSim package is its ability to deal with deterministic events. In

other words, the package allows the user to specify that certain events will occur with a

probability of one. A relevant example is the enrolment of children in elementary school in the

year in which they turn seven years old. Furthermore, due to the generic structure of the

microsimulation model being implemented, the MicSim package allows users to follow migrants

once they have entered the virtual population. All in all, we find that the MicSim package is able

to conduct meaningful population projections at a very fine-grained level from a relatively low

level entry point. This article provides excerpts of examples that illustrate its applicability. The full

specification of the examples given can be found on the help pages of the package.

Clearly, the work on the MicSim package is not completed, and there are several issues that still

need to be addressed. One challenge lies in taking into account the amount of time individuals

have already spent in their initial states when entering the virtual population. This is of special

importance if semi-Markov processes are used to describe life-course dynamics. Ignoring the

time already spent in the initial states might cause distorted first event times. In particular,

members of the base population and migrants are affected by this problem. In its current version,

the MicSim package does not ask for the time spans members of the base population and

migrants have spent in their initial states. Thus, this kind of information is not accessible for

further processing. This issue is related to another problem: namely, that of which time point

should be used as a reference point for duration measurement. Currently, the MicSim package

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 25

measures the length of duration starting from the last change of the affected state variable. While

this might make sense with regard to birth intervals and gestation gaps, it could be problematic

with regard to divorce events. For example, we know that the divorce risk depends not only on

the time elapsed since the wedding, but also on the time elapsed since the last birth event (if there

was one). We are currently extending the MicSim package to tackle these issues: First, we are

broadening the definition of the base population and the definition of the set of immigrants so

that the time already spent in the initial states can be documented. In addition, we will provide

the user with the opportunity to decide the reference point of the duration measurement for each

event separately.

The R environment provides a huge set of visualization tools. However, the MicSim package

currently does not make use of this potential and does not offer any plotting option. As the

MicSim package relies on a generic microsimulation model, the simulation outcome might be of

any type, and tailor-made plotting functions are hard to specify. We therefore argue that the user

will know best how he/she wants the simulation output of a specific application to be visualized.

Furthermore, we recommend the use of existing visualization devices provided by other related R

packages. For example, the Biograph package (Willekens, 2013) makes it possible to plot life

histories in Lexis diagrams and to generate state occupation diagrams, while the TraMineR

package facilitates the visualization of state and event sequences (Gabadinho et al., 2014).

Nevertheless, we are currently working on a set of plotting functions that apply to particular

situations, such as population pyramids that refer to distinct time points.

The presented microsimulation model can be extended in other directions, as well. Parental

characteristics and behaviour might be modelled to influence children’s characteristics and

behaviour. Marriage markets can be included, with couples and household entities being

modelled and simulated. Furthermore, macro components such as macroeconomic indicators

might be considered and spatial patterns may be added. However, including a large number of

potential influencing factors in a microsimulation model is generally difficult, as causal

relationships might be disturbed and even distorted. Hence, while it is possible to add some of

the functionality outlined above to the MicSim package, doing so would require very careful

reasoning, and thus remains an issue for further research and software versions.

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 26

APPENDIX

A.1 Following Migrants: An Example

The MicSim package allows following migrants and integrating them into the native population

after some time, for example, after five years. The source code of an accordant example is given

in the subsequent.

First, we define the simulation horizon and the state space comprising besides “dead” the state

variables “sex” and “migrant”. The migrant variable has two values: “being migrant” (mig) and

“not being migrant” (notMig).

R> simHorizon <- setSimHorizon(startDate="01/01/2000",
+ endDate="31/12/2020")

 R> sex <- c("m", "f")
 R> migrant <- c("mig", "notMig")
 R> stateSpace <- expand.grid(sex = sex, migrant = migrant)
 R> absStates <- "dead"

Then, we construct a base population with five individuals.

 R> dts <- c("31/12/1930", "03/04/1999", "15/10/1956",
 + "11/11/1991", "01/01/1965")
 R> birthDates <- chron(dates = dts, format = c(dates =
 + "d/m/Y"))
 R> initStates <- c("f/notMig", "m/notMig", "f/notMig",
 + "m/notMig", "m/notMig")
 R> initPop <- data.frame(ID = 1:5, birthDate = birthDates,
 + initState = initStates, stringsAsFactors = FALSE)

We create five migrants entering the virtual population at June 6, 2001.

 R> # Defining a set of migrants; M=5
 R> IMdts <- rep(c("6/6/2001"), 5)
 R> immigrDates <- chron(dates = IMdts, format = c(dates =
 + "d/m/Y"))
 R> IMinitStates <- c("f/mig", "m/mig", "f/mig", "m/mig",
 + "m/mig")
 R> immigrPop <- data.frame(ID = 6:10, immigrDate =
 + immigrDates, birthDate = birthDates, immigrInitState =
 + IMinitStates, stringsAsFactors = FALSE)

The transition rate for experiencing a transition from “being migrant” to “not being migrant” is

set to zero during the first five years after migration and set to infinity after that time.

 # Defining a transition rate for becoming a nonmigrant
 R> migToNotMigRates <- function(age, calTime, duration){
 + rate <- ifelse(duration >= 5, Inf, 0)
 + return(rate)
 + }

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 27

We use the Gompertz model to describe mortality rates.

 R> mortRates <- function(age, calTime, duration){
 + a <- 0.00003
 + b <- ifelse(calTime <= 2020, 0.1, 0.097)
 + rate <- a * exp(b * age)
 + return(rate)
 + }

The transition matrix determines two possible events, namely the transition from “being

migrant” to “not being migrant” and dying.

 R> allTransitions <- matrix(c("mig->notMig",
 + "migToNotMigRates"), nrow = 1)
 R> absTransitions <- c("dead", "mortRates")
 R> transitionMatrix <- buildTransitionMatrix(
 + allTransitions = allTransitions, absTransitions =
 + absTransitions, stateSpace = stateSpace)

After having defined all of the ingredients required, we are ready to conduct a microsimulation

run.

 R> set.seed(234)
 R> pop <- micSim(initPop=initPop, immigrPop=immigrPop,
 + transitionMatrix=transitionMatrix,
 + absStates=absStates, maxAge=maxAge,
 + simHorizon=simHorizon)

A.2 Parallel Execution via micSimParallel

For a simple setting (without considering immigration, offspring born during the simulation, and

enrolment in elementary school), a parallel execution on, for example, five cores can be

performed by:

 R> cores <- 5
 R> seeds <- c(1233, 1245, 1234, 5, 2)
 R> pop <- micSimParallel(initPop = initPop, transitionMatrix
 + = transitionMatrix, absStates = absStates, maxAge =
 + maxAge, simHorizon = simHorizon, cores = cores, seeds
 + = seeds)

Here, the number of cores to be accessed and the related set of seeds are given to

micSimParallel via its input arguments cores and seeds. When accounting in addition for

migration, offspring born during the simulation, and enrolment in elementary school, the

following command is used:

 R> cores <- 5
 R> seeds <- c(1233, 1245, 1234, 5, 2)
 R> pop <- micSimParallel(initPop = initPop, immigrPop =

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 28

 + immigrPop, transitionMatrix = transitionMatrix,
 + absStates = absStates, initStates = initStates,
 + initStatesProb = initStatesProb, maxAge = maxAge,
 + simHorizon = simHorizon, fertTr = fertTr,
 + dateSchoolEnrol = dateSchoolEnrol, cores = cores, seeds
 + = seeds)

ACKNOWLEDGEMENT

I have to acknowledge my gratitude to Frans Willekens who encouraged me and gave me the

opportunity to develop and to work on the MicSim package. Furthermore, I am in debt to him

and Anna Klabunde for fruitful discussions, a lot of helpful suggestions, and for revising first

versions of this article. Moreover, I have to thank two anonymous referees for very helpful

comments to improve the quality and the content of this article.

REFERENCES

Aalen, O., Borgan, O., & Gjessing, H. (2008). Survival and event history analysis: A process point

of view. Springer.

Andersen, P., & Keiding, N. (2002). Multi-state models for event history analysis. Statistical

Methods in Medical Research, 11 (2), 91-115.

Becker, G., Landes, E., & Michael, R. (1977). An economic analysis of marital instability. The

Journal of Political Economy , 85 (6), 1141-1187.

Blossfeld, H.-P., Hamerle, A., & Mayer, K. (1989). Event history analysis. Lawrence Erlbaum

Associates.

Brüderle, J., & Diekmann, A. (1995). The log-logistic rate model: Two generalizations with an

application to demographic data. Sociological Methods & Research, 24 (2), 158-186.

Chandola, T., Coleman, D., & Horns, R. (1999). Recent European fertility patterns: Fitting curves

to ‘distorted’ distributions. Population Studies, 53 , 317-329.

Diekmann, A., & Schmidheiny, K. (2008). The intergenerational transmission of divorce: A

fifteen-country study with the Fertility and Family Survey (ETH Zurich Sociology Working

Papers No. 4). ETH Zurich, Chair of Sociology.

Gabadinho, A., Studer, M., Muller, N., Buergin, R. & Ritschard, G. (2014). TraMineR: Trajectory

miner: A toolbox for exploring and rendering sequence data [Computer software manual].

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 29

Retrieved from http://cran.r-project.org/package=TraMineR (R package version 1.8.8).

Galler, H. (1997). Discrete-time and continuous-time approaches to dynamic microsimulation

(reconsidered) (Tech. Rep.). University of Canberra: NATSEM, National Centre for Social

and Economic Modelling, University of Canberra.

Gampe, J., & Zinn, S. (2007). Description of the microsimulation model (Technical report,

MicMac project). MPIDR, Rostock.

Himmelspach, J. (2012). JAMES II: Extending, using, and experiments. In Proceedings of the 5th

International ICST Conference on Simulation Tools and Techniques (p. 208-210). ICST,

Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering).

Hougaard, P. (1999). Multi-state models: A review. Lifetime Data Analysis, 5 (3), 239-264.

Kijima, M. (1997). Continuous-time Markov chains. In Markov processes for stochastic modeling

(p. 167-241). Chapman & Hall.

Law, A., & Kelton, W. (2000). Generating random variates. In Simulation modeling and analysis

(p. 437-495). Mc Graw Hill Higher Education.

Mannion, O. (2014, June). jamsim: Java & R based microsimulation. Retrieved from

https://code.google.com/p/jamsim/

Mannion, O., Lay-Yee, R., Wrapson, W., Davis, P., & Pearson, J. (2012). Jamsim: A

microsimulation modelling policy tool. Journal of Artificial Societies and Social Simulation, 15

(1), 8.

Matsumoto, M., & Nishimura, T. (1997). Mersenne twister: A 623-dimensionally equidistributed

uniform pseudo-random number generator. Transactions on Modeling and Computer

Simulation: Special issue on uniform random number generation, 8 (1), 3-30.

Mayer, K., & Tuma, N. (Eds.). (1990). Event history analysis in life course research. University of

Wisconsin Press.

Monteiro, A., Smirnov, G., & Lucas, A. (2006). Non-parametric estimation for non-

homogeneous semi-Markov processes: an application to credit risk (Discussion Paper No. TI

2006-024/2). Tinbergen Institute.

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

http://cran.r-project.org/package%3DTraMineR
https://code.google.com/p/jamsim/

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 30

Neyer, G., & Andersson, G. (2008). Consequences of family policies on childbearing behavior:

Effects or artifacts? Population and Development Review, 34 (4), 699- 724.

Onggo, B. (2010). Parallel discrete-event simulation tool for population analysis. In Proceedings

of the Operational Research Society Simulation Workshop 2010 (sw10).

Perumalla, K. (2005). µsik: A micro-kernel for parallel/distributed simulation systems. In

ACM/IEEE/SCS Workshop on Parallel and Distributed Simulation (pads). Monterey, CA:

IEEE Computer Society Press.

R Development Core Team. (2013). R: A language and environment for statistical computing

[Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org.

Rubinstein, R., & Kroese, D. (2008). Simulation and the Monte Carlo Method (2nd ed.). Wiley.

Statistics Canada. (2011). Modgen version 10.1.0: Developer‘s guide. Retrieved from

http://www.statcan.gc.ca/microsimulation/modgen/doc-eng.htm.

Willekens, F. (2009). Continuous-time microsimulation in longitudinal analysis. In A. Zaidi, A.

Harding, & P. Williamson (Eds.), New frontiers in microsimulation modelling (p. 353-376).

Ashgate, Farnham, Surrey, UK. (Book released during 2nd International Microsimulation

Conference, Ottawa, June 2009).

Willekens, F. (2013). Biograph: Explore life histories [Computer software manual]. Retrieved

from http://cran.r-project.org/package=Biograph (R package version 2.0.4).

Wolf, D. (1986). Simulation methods for analyzing continuous-time event-history models.

Sociological Methodology , 16 , 283-308.

Zinn, S. (2014). MicSim: Performing continuous-time microsimulation [Computer software

manual]. Retrieved from http://cran.r-project.org/package=MicSim (R package version

1.0.6).

Zinn, S., Himmelspach, J., Gampe, J., & Uhrmacher, A. (2009). Mic-core: A tool for

microsimulation. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G. Ingalls

(Eds.), Proceedings of the 2009 winter simulation conference. Piscataway, NJ: IEEE.

Zinn, S. (2011) A continuous-time microsimulation and first steps towards a multi-level approach

in demography. PhD dissertation, Faculty of Information Science and Electrotechnics,

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

http://www.r-project.org/
http://www.statcan.gc.ca/microsimulation/modgen/doc-eng.htm
http://cran.r-project.org/package=Biograph
http://cran.r-project.org/package=MicSim

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 31

University of Rostock. Retrieved from

http://rosdok.unirostock.de/file/rosdok_derivate_0000004766/Dissertation_Zinn_2011.pdf.

1 The MicSim package is licensed under the terms of the GPLv2.

2 For example, a single-core run of the microsimulation application on studying living
arrangement, educational carrier and fertility transitions which we describe in Section 2 lasts
ca. 400 seconds on a desktop workstation equipped with Intel(R) Core(TM)i7, CPU 2.80GHz,
8GB RAM, under Windows 7 (64bit), MicSim version 1.0.6 and R version 3.0.1. Running the
same application with six cores lasts ca. 65 seconds. This is an approximate run time reduction
by factor 6. By contrast, the Mic-Core needs ca. 6 seconds to perform a comparable
simulation run, which means a further run time reduction by approximately factor 10.

3 To access the help page of the micSim function start R. Then, instruct R to download the
packages MicSim, chron, snowfall, and rlecuyer from the R package database CRAN. After R
has finished this task, enter the command library(MicSim) into the R input window
(completed by pressing ENTER). The MicSim package is loaded. Subsequently, enter the
command ?micSim (again completed by pressing ENTER). Now the help page of the
micSim function of the MicSim package opens.

4 The source code can simply be copied into the R input window and the examples instantly
being performed.

5 If the user really does not want to incorporate transitions to “dead,” this can be achieved by
setting the mortality risk to zero; see also Section 2.4.3.

6 If other states than “dead” or “emigrated” should be defined as not being left again, their
transition rates have to be set to zero; see also Section 2.4.3.

7 Here, we have to be careful to ensure that R does not convert strings into factors when
constructing the data frame, by using the command stringsAsFactors = FALSE. This
type of conversion causes problems when the microsimulation is run.

8 In the recent version of the MicSim package, all individuals are modelled and simulated as
being completely independent of each other. Consequently, for example, child characteristics
cannot be made dependent on mother characteristics. The only exception is the event of
childbirth. If specified by the user, such an event leads to the creation of a new individual, see
Section 3.1. The assumption of independent life-courses is a clear limitation, which surely has
to be changed in an upcoming version of the MicSim package. However, the source code of
all functions implemented in the package can be read by the user and thus be adapted to meet
own needs. The user has simply to enter the name of the function of interest into the R input
window, for example, micSim. Then, the related source code is printed. Admittedly, adapting
source code requires a deeper knowledge of R programming.

9 The MicSim package solves the integrated hazard which is an essential part of the distribution
function of a latent waiting time in a state by means of R’s integrate function. This
function requires the functions to integrate to be able to deal with vectors of input values.

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

http://rosdok.unirostock.de/file/rosdok_derivate_0000004766/Dissertation_Zinn_2011.pdf

INTERNATIONAL JOURNAL OF MICROSIMULATION (2014) 7(3) 3-32 32

10 The MicSim package also provides the function convertToWideFormat reshaping
microsimulation output into wide format. In wide format, the data comprises for each episode
which an individual experiences additional column entries.

ZINN The MicSim Package of R: An Entry-Level Toolkit for Continuous-Time Microsimulation

	1. introduction
	2. microsimulation model
	2.1. The State Space
	2.2. Simulation Horizon and Maximum Age
	2.3. The Virtual Population
	2.4. Stochastic Model of Individual Behavior
	2.4.1. Modeling Life-Course Events Over Age, Calendar Time, and Time Elapsed
	2.4.2. Specifying Models for Life-Course Events in MicSim
	Transition rates functions
	Transition matrix

	3. SPECIAL FEATURES OF MicSim
	3.1. Simulating Offspring
	3.2. Enrolment in Elementary School
	3.3. Following Migrants

	4. CONDUCTING MICROSIMULATION AND OUTPUT
	5. conclusion
	appendix
	A.1 Following Migrants: An Example
	A.2 Parallel Execution via micSimParallel

	Acknowledgement
	REFERENCES

