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could be considered for this purpose. We compare six potential models, discuss the assumptions 

of these models, and perform an empirical assessment that compares synthetic data simulated from 

these models with observed data. We chose six regression-style models that can be easily 

implemented in standard statistical software: an ordinary least squares regression model with a 

lagged dependent variable, two random effects models (with and without an autoregressive order 

1within-unit error structure), a fixed effects model, a hybrid model combining features from both 

fixed and random effects models, and a dynamic panel model estimated with system generalised 

method of moments. The criterion for good performance was the proximity of fit of simulated 

data to the observed data on various characteristics. We found evidence of violated assumptions 

in our data for all the models but found that, for the majority of data characteristics assessed, all 

the models produced synthetic data that were a reasonable approximation to the observed data, 

with some models performing better or worse for particular characteristics. We hope more 

modellers will consider and test the assumptions of models used for parameter estimation and 

experiment with different model specifications resulting in higher quality microsimulation models 

and other research applications. 

KEYWORDS: Microsimulation, panel data analysis, simulation, dynamic model, estimation 

techniques, model assumptions. 

JEL classification: C23, C53, C63. 
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1. INTRODUCTION 

Microsimulation models seek to represent real-world processes and can generate extensive 

amounts of synthetic data. It is desirable that the simulated data reproduce empirical benchmark 

data. When the characteristics and behaviours of individuals are simulated through time in a 

dynamic microsimulation, the transition equations are often the coefficients from a statistical 

regression model of some type. Hence, a key decision in creating a dynamic microsimulation model 

(DMSM) is the choice of statistical model with which to estimate the parameters of the transition 

equations.  

The choice of estimation technique will, in the first instance, depend on whether a continuous- or 

discrete-time DMSM is being constructed. In a continuous-time DMSM events can occur at any 

point in time and thus time-to-event models are the primary statistical estimation technique. In a 

discrete-time DMSM, which is the focus in this paper, values are simulated or updated in discrete 

time steps, most often, annually. Discrete-time DMSMs have primarily used dichotomous or 

categorical variables and transition probabilities have been estimated by constructing tables from 

available data or using logistic regression models. Continuous variables, especially those where the 

value of the variable in one time period affects the value in the next time period (i.e. state dependent 

variables), pose more of a challenge and a range of techniques have been used in this instance. 

These techniques include a variety of regression models as well as more theoretically driven 

equations that maximise a utility function (Spataro, 2002; Bianchi, Romanelli, & Vagliasindi, 2005; 

van Sonsbeek, 2010). Table 1 shows the regression-based techniques that have been used for 

continuous variables in a number of DMSMs. The choice among these techniques is not simple, 

yet there been little formal discussion or comparison of regression-style estimation techniques for 

DMSMs.  
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Table 1 Statistical regression techniques used by other dynamic microsimulation models 
(Table legend) 

OLS regression with an LVD Random effects Fixed effects 

MINT3: Earnings of retirees who choose 

to work, earnings of social security 

beneficiaries (Toder et al., 2002) 

PenSim2: Earnings (Emmerson, Reed, & 

Shephard, 2004) 

MINT1: Earnings (Toder et al., 2002) 

SVERIGE: Earnings (Rephann & Holm, 

2004) 

MIDAS: Hours worked, wages (Dekkers et 

al., 2008) 

Income Distribution of the Dutch Elderly: 

Income (Knoef, Alessie, & Kalwij, 2013) 

DYNAMOD-2: Earnings (Bækgaard, 2002) DYNASIM-3: Hours worked, earnings 

(Favreault & Smith, 2004) 

MINT3: Pre-retirement earnings after age 

50 (Toder et al., 2002) 

LifePaths: Hours worked (Wolfson, 1995) SAGE: Earnings (Zaidi et al., 2009) 
 

 
MINT3: Non-pension wealth, home 

equity, non-pension assets (Toder et al., 

2002) 

 

 
SESIM: Earnings, interest paid, size of 

loan (Klevmarken & Lindgren, 2008) 
 

   

An appropriate statistical modelling technique should be chosen by checking that the data meet 

the assumptions of the model. Additionally, researchers and modellers need to be aware that the 

true model is unknown and that the choice of model leads to additional uncertainty in parameter 

estimates and in predictions. If the chosen model is a poor approximation to the true model, then 

the error in the simulations may be much greater than that indicated by the standard errors of 

parameter estimates and the Monte Carlo simulation variability.  

The final application of the model should also be taken into account. When constructing a DMSM, 

one must also consider how the modelling technique will affect the utility of the microsimulation 

model. It is necessary that the simulated data generated reflect observed reality. If they do not, it is 

hard to draw meaningful conclusions from the DMSM. One also needs to ensure that the full range 

of desired scenarios can be performed. The statistical model chosen can affect this. 

Comparative assessments between different models (for the estimation of parameters to drive a 

DMSM) are rare in the literature. We use the development of a discrete-time DMSM to model the 

trajectory of a birth cohort as an opportunity to assess the performance of six candidate regression-

style models in generating continuous data that closely reproduces the empirical data. For this 

purpose we used an established longitudinal study in a New Zealand city (Fergusson & Horwood, 

2001). In our empirical assessment we included techniques that have been used in other DMSMs 

(as outlined in Table 1), even where fundamental statistical assumptions may have been violated. 

Our interest is whether the parameter estimates from a given model, are able to inform a DMSM 

that accurately reproduces empirical observed data, regardless of whether the assumptions of the 

model are met. Although the assessment performed here is specific to our dataset and the results 

cannot be generalised to others creating an MSM, we trust that it encourages modellers to 

experiment with different model specifications and provides ideas on what models to consider and 
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on how a comparison between then can be undertaken. 

In what follows, we first review the different techniques, focusing on their various assumptions 

and implementation in a DMSM. We test the assumptions in our dataset and find evidence of 

violated assumptions for all the models. We then outline the performance assessment method, 

before going on to report the results comparing the models on a range of criteria and discuss the 

findings. 

2. REVIEW OF REGRESSSION-STYLE MODELLING TECHNIQUES 

For most continuous variables used in DMSMs, the values for one year depend on, or are related 

to, the values in the previous year or years; a consistent trajectory across time is usually the reality 

for a given individual. Hence, with each of the techniques, a key concern is to simulate values over 

time such that the value simulated for a unit for the current time period takes account of the value 

that was simulated for that variable in the previous time period. 

In choosing which regression techniques to use for the empirical assessment, we started with those 

commonly used by others for discrete-time DMSMs, these being ordinary least squares regression 

with a lagged dependent variable (OLS-LDV), random effects (RE) (without an LDV) and fixed 

effects (FE) (see Table 1). We selected three additional techniques that offered some potential 

further advantages: an extension of the random effects model with autoregressive within-child 

errors of the first order (AR(1)), a hybrid model combining features from both econometric fixed 

effects and random effects models, and a dynamic panel model estimated with the generalised 

method of moments (GMM). We restricted the estimation techniques we considered to those that 

could be easily implemented by standard regression software. For each of the models there are a 

number of assumptions that could be violated resulting in biased coefficients. Below, each model 

is described and key assumptions are discussed.  

To define notation that will be applicable for all the estimation techniques, let us write the general 

model as 

𝑦𝑖,𝑡 = 𝛾 + 𝛼𝑦𝑖,𝑡−1 + 𝜷𝒙𝑖,𝑡 + 𝜀𝑖,𝑡 

𝜀𝑖,𝑡 = 𝜇𝑖 + 𝜐𝑖,𝑡 

where 𝑦𝑖,𝑡 is the value of the response variable of the child 𝑖 at time 𝑡, 𝒙𝑖,𝑡 is a vector of predictors 

or explanatory variables for child 𝑖 (which may be constant over time or may be time-variant), 𝜇𝑖 
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is the individual effects for child 𝑖, and 𝜐𝑖,𝑡 is the deviation in the response for child 𝑖 at time 𝑡 

from the mean response for child 𝑖. 𝛾 is the estimated intercept coefficient (which can be thought 

of as the grand mean under certain parameterisations of 𝑦𝑖,𝑡−1 and 𝒙𝑖,𝑡), 𝛼 is the coefficient for the 

LDV, and 𝜷 is the vector of coefficients for the predictors. 

2.1. OLS regression with LDV (OLS-LDV) 

A standard linear regression model is estimated with OLS that includes, as a predictor variable, the 

lagged dependent variable (LDV) (the value of the dependent variable in the previous time period). 

This technique is summarised in Box 1. The LDV is included in order to maintain dynamism in 

the simulated data; it ensures that the value simulated for this year depends on the value of that 

variable in the previous year. This is an important feature for state-dependent variables in 

generating data that mimic observed reality.  

A key assumption is that there are no individual effects, that is, after taking into account other 

predictors, they are zero and all individuals have the same intercept. However, with longitudinal 

data the individual effects are generally not truly zero and so biased parameter estimates can occur. 

It is a well-documented phenomenon that the inclusion of an LDV in this manner violates the 

assumptions on the errors and results in biased estimates (Verbeek, 2008:377-378; Cameron and 

Trivedi, 2005:763-764). 

Box 1 Summary of OLS regression with a lagged dependent variable (LDV) 
 

Description of 

approach: Standard model with an LDV.  

Estimation: Ordinary least squares (OLS)  

Assumptions on 

individual effects and 

errors: 𝜇𝑖 = 0,  𝜀𝑖,𝑡 = 𝜐𝑖,𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2),  𝐶𝑜𝑣(𝜀𝑖,𝑡,  𝒙𝑖,𝑡) = 0 

Estimates of main 

effects of time-

invariant predictors: Estimated and included directly in the simulation 

Implementation in the 

simulation: 
Coefficients (𝛾, 𝛼, and 𝜷) applied to the corresponding individual 

values to get predicted mean for each individual. Random number 

drawn from normal distribution with mean equal to the predicted 

mean and standard deviation equal to 𝜎. 
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Other advantages and 

disadvantages: Simple to estimate the model and implement in the simulation.  

2.2. Random effects (RE) 

Because of the problem of including an LDV as a predictor variable, random effects models have 

been used to generate parameters for use in a DMSM (see Table 1). In the OLS-LDV technique, 

the LDV predictor variable gives internal consistency and allows the last time-period’s value to 

affect the value simulated for the current time-period. In the random effects method, there is no 

LDV predictor but each individual is assigned an individual effect which they maintain throughout 

the time-frame of the simulation. An individual’s simulated values oscillate around their own 

individual trajectory and hence a degree of internal consistency is maintained across the simulated 

life course of an individual. Previously simulated values do not explicitly affect the current 

simulated values but the individual effects help generate coherent data values for each individual. 

An important assumption is that the individual effects are not correlated with other predictors in 

the model. This can be tested with a Hausman test (Hausman, 1978) that effectively compares the 

coefficients from a random effects model with those from a fixed effects model (Green, Kim, & 

Yoon, 2001). 

The standard random effects technique with a variance components error structure assumes that, 

within an individual, the errors are independent. With continuous variables measured multiple 

times on the same individual, often this is not the case; we may expect observations measured 

closer together in time to be more similar than observations measured further apart. Therefore we 

also considered an extension of the random effects model that does not assume this independence 

but imposes a correlation structure on the within-person errors. We imposed a simple 

autoregressive structure of the first order (AR(1)). This model is abbreviated as RE-AR(1). These 

two variations of the random effects technique are summarised in Boxes 2 and 3. 

A major decision when using the random effects method is how to assign the individual effects. 

Some options for doing this are discussed in Panis (2003), Richiardi (2014), and Richiardi and Poggi 

(2014). In the empirical work in this paper, Richiardi’s Rank Method (Richiardi, 2014; Richiardi & 

Poggi, 2014) was used. In this method the differences, for the first year, between the observed and 

predicted outcomes (the linear predictor not including the individual effect) are ranked across all 

N units. N values are then simulated from the normal distribution corresponding to the random 

intercepts and from the normal distribution corresponding to the within-unit errors. These are 
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summed to create the overall error term, (𝜀𝑖,𝑡=0). The overall errors are ranked and then random 

intercepts are assigned by matching the two sets of rankings. 

Box 2 Summary of random effects variance components technique  
 

Description of approach: Random child intercepts. No LDV included (𝛼 = 0). 

Estimation: Various options but restricted maximum likelihood 

(REML) used 

Assumptions on individual 

effects and errors: 
𝜇𝑖~𝑖𝑖𝑑 𝒩(0, 𝜎𝑏

2),  𝜐𝑖,𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2),  𝐶𝑜𝑣(𝜇𝑖,  𝒙𝑖,𝑡) =

0,  𝐶𝑜𝑣(𝜇𝑖,  𝜐𝑖,𝑡) = 0 

Estimates of main effects of 

time-invariant predictors: Estimated and included directly in the simulation 

Implementation in the 

simulation: 

As for OLS-LDV except each child assigned an 

individual effect which is added to the predicted mean 

Other advantages and 

disadvantages: 

Must decide how to include the individual effects and 

treat them during scenario testing 

Box 3 Summary of random effects AR(1) technique  
 

Description of 

approach: 
Random child intercepts. No LDV included (𝛼 = 0). Within-child 

errors assumed to have an AR(1) structure. 

Estimation: Various options but penalized quasi-likelihood used via the R 

function glmmPQL. 

Assumptions on 

individual effects and 

errors: 

𝜐𝑖,𝑡 = 𝜌𝜐𝑖,𝑡−1 + 𝜔𝑖,𝑡,  𝜇𝑖~𝑖𝑖𝑑 𝒩(0, 𝜎𝑏
2),  𝜔𝑖,𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2),  

𝐶𝑜𝑣(𝜇𝑖,  𝒙𝑖,𝑡) = 0,  𝐶𝑜𝑣(𝜇𝑖,  𝜔𝑖,𝑡) = 0 

Estimates of main 

effects of time-

invariant predictors: Estimated and included directly in the simulation 

Implementation in 

the simulation: 

As for variance components RE, except that the standard deviation 

of the simulated values is now a random draw from a normal 

distribution when mean equal to 𝜌𝜐𝑖,𝑡−1 and standard deviation 𝜎. In 

practice, the error (𝜐𝑖,𝑡) was simulated first and then added to the 

individual fitted value (which includes the individual effect, 𝜇𝑖).  

This error was saved so that it could be used in simulating the error 

for the next year. 

Other advantages and 

disadvantages: 

As for variance components RE, plus more programming required to 

implement AR errors 
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2.3. Fixed effects (FE) 

If a significant Hausman test leads to concern about the random effects model (due to the violated 

assumption of independence between individual effects and other predictor variables), a fixed 

effects model may appeal. A fixed effects model uses only within-person variation and estimates 

‘within’ or ‘fixed’ effects which can be interpreted as the effect if an individual changes on a 

particular predictor. This is opposed to ‘between’ or ‘cross-sectional’ estimates that are interpreted 

in terms of the difference between group means (see Goodrich (2006) or Zorn (2001) for further 

explanation on between and within effects). A fixed effects model can be estimated by including 

dummy variables for the individuals or by transforming the time-variant variables with a deviation 

score transformation where, for each individual, the difference is taken between the original values 

of the variable at each time point and their individual-specific mean. The fixed effects technique is 

summarised in Box 4. 

Simulating data using estimates from a fixed effects model can be performed in the same way as 

for random effects models, except that, in the assignment of individual effects using the Rank 

method, instead of drawing values from a normal distribution, values are randomly sampled with 

replacement from the estimates of the individual effects. 

In a fixed effects model the individual effects are regarded as fixed to be estimated (as opposed to 

random variates). The individual effect represents all the unique time-invariant characteristics of 

an individual that are not captured by the observed time-variant variables. Since this parameter is 

estimated in the model, it allows the modeller to say that they have controlled for all time-invariant 

characteristics of the individuals in the dataset, even those not observed. However, because the 

individual effects are perfectly collinear with the time-invariant characteristics, no effects will be 

estimated for any time-invariant predictors. 

For time-invariant categorical variables, separate fixed effects models can be fit for the different 

levels of the variable (e.g. separate FE models for males and females). This then allows the effects 

of a time-invariant categorical variable to be tested in a scenario in an MSM (either by changing the 

data values of the time-invariant variable of the simulation units or, if scenarios are performed by 

modifying parameters, by changing the intercept in the models). This approach is only practical 

however when there are a small number of time-invariant categorical variables and each variable 

has only a few categories.  Even for the case where there are four time-invariant categorical 

variables, with, say, three variables having three categories and one having two categories (as is the 

case in our empirical assessment), the number of models to fit is 54. As well as having the rather 
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cumbersome task of fitting so many models, if the sample size is not extremely large, the number 

of individuals in most of the cells can become too small to confidently estimate the models. 

For continuous variables, fixed effects models pose a serious limitation for MSM because scenarios 

of the direct effects of these variables cannot be tested. Although interactions with time-invariant 

variables can be included in the model, this only allows scenarios where the rate of change is 

modified. To illustrate, an age by time-invariant continuous variable interaction, allows the effect 

of age on the outcome to change as the value of the continuous variable changes and a scenario to 

be performed where rate of the change (as the continuous variables changes) is modified. If 

scenarios are performed by changing the distribution of a time-invariant continuous variable, 

misleading simulation results can occur even if interactions have been included. 

A fixed effects model was employed in the empirical assessment as simulated data can be generated 

and compared to that from other models, but, due to the limitation of scenario testing for time-

invariant variables, fixed effects models may not be a feasible option for all MSMs. 

Box 4 Summary of fixed effects technique  
 

Description of 

approach: 

Uses only within child variation to estimate fixed/within effects for 

time-variant predictors. Run as standard regression but include the 

child IDs as a set of dummy variables or use deviation scores for 

time-variant variables and exclude time-invariant variables. No 

LDV included (𝛼 = 0). 

Estimation: OLS 

Assumptions on 

individual effects and 

errors: 

𝜇𝑖 estimated,  𝜐𝑖,𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2),  𝐶𝑜𝑣(𝜇𝑖,  𝒙𝑖,𝑡) ≠ 0,  

𝐶𝑜𝑣(𝜇𝑖,  𝜐𝑖,𝑡) = 0 

Estimates of main 

effects of time-

invariant predictors: 

No estimates of main effects. Can include interactions with time-

variant predictors. 

Implementation in the 

simulation: As for random effects.  

Other advantages and 

disadvantages: 

Does not provide estimates of time-invariant variables which are 

crucial for a fully functioning DMSM. 

2.4. Hybrid model 

The main drawback with the fixed effects model is the inability to estimate the direct effects of 
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time-invariant predictors. A model described in Zorn (2001) and Allison (2005) provides a way to 

estimate both within/fixed effects for time-variant predictors and also between estimates for time-

invariant predictors. Allison calls this model a “hybrid” model and this is how we will refer to it in 

this paper. Goodrich (2005) also discusses this model and calls it a simultaneous parsed model. 

Each predictor is decomposed into two variables: a ‘mean variable’, denoted 𝒛𝑖, which contains the 

individual-specific means over all the time periods (for each individual, the mean is repeated for 

each time point the variable was observed) and represents the between-person variation and, 

‘deviation variables’, denoted 𝒙𝑖,𝑡
∗ , constructed by taking, for each individual, the difference 

between the original values of the variable at each time point and their individual-specific mean. 

The deviation variables represent the within-person variation. The model is estimated by fitting a 

model with random intercepts for each individual and including as predictors the time-invariant 

variables and both the mean and deviation variables for the time-variant variables. The original 

(non-decomposed) form of the outcome variable is used. We used a standard variance components 

error structure. The hybrid technique is summarised in Box 5 and can be represented by the 

following equation: 

𝑦𝑖,𝑡 = 𝛾 + 𝜷𝒙𝑖,𝑡
∗ + 𝝀𝒛𝑖 + 𝜀𝑖,𝑡 

𝜀𝑖,𝑡 = 𝜇𝑖 + 𝜐𝑖,𝑡 

In the formulation above 𝒛𝑖 represents the time-invariant variables as well as representing the 

‘mean variables’ of the time-variant variables.  

Implementation of a hybrid model in a DMSM can be performed in the same way as described for 

the random effects model, except that, when applying the coefficients only the estimates from the 

time-invariant and the deviation variables are used (that is, the estimates from the ‘mean variables’ 

that are created from the time-variant variables are not used). 

Box 5 Summary of hybrid technique  
 

Description of 

approach: 

Estimates fixed effects for time-variant predictors and cross-

sectional effects for time-invariant predictors. Each predictor 

decomposed into between-unit variation, 𝒛𝑖, (repeated individual-

specific means for each time point) and within-unit variation, 𝒙𝑖,𝑡
∗ , 

(the difference between the raw value and  𝒛𝑖). Model estimated with 

the outcome in the original form and including the time-invariant 

predictors, 𝒛𝑖,  𝒙𝑖,𝑡
∗ , and random individual effects. No LDV 

included. 
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Estimation: Restricted Maximum Likelihood (REML) 

Assumptions on 

individual effects and 

errors: 

𝜇𝑖~𝑖𝑖𝑑 𝒩(0, 𝜎𝑏
2),  𝜐𝑖,𝑡~𝑖𝑖𝑑 𝒩(0, 𝜎2), by construction 

𝐶𝑜𝑣(𝜇𝑖, 𝒙𝑖,𝑡
∗ ) = 0 (so is not strictly an assumption),  𝐶𝑜𝑣(𝜇𝑖,  𝜐𝑖,𝑡) =

0,  𝐶𝑜𝑣(𝒛𝑖,  𝜐𝑖,𝑡) = 0 

Estimates of main 

effects of time-

invariant predictors: Estimated and included directly in the simulation 

Implementation in 

the simulation: 
As for random effects. For time-invariant variables, the fixed 

(‘within’) effects are used; the ‘between’ effects of these variables 

are not used. 

Other advantages and 

disadvantages: 

Provides fixed effects estimates and main effects for time-invariant 

variables. Standard errors not correct. 

2.5. Dynamic panel model (DPM) estimated with the generalised method of moments 

(GMM) 

Because the LDV is endogenous (correlated with the errors) including it when using the previous 

techniques violates assumptions and results in biased parameter estimates. The use of instrumental 

variable techniques is required for consistent estimation when an LDV is included in the model 

(Verbeek, 2008:378; Cameron & Trivedi, 2005:765). The simplest way to do this is to use the 

Anderson-Hsiao levels estimator (Anderson & Hsiao, 1982), a two-stage least squares approach. 

This uses the second lag of the outcome variable as the instrument for the LDV. More lags can be 

used as instruments in this approach, but as more lags are used, the available sample size for fitting 

the model decreases. 

The two-stage least squares approach also assumes that the errors are independent and 

homoscedastic. This is most likely not the case with panel data. We can move to Generalised 

Method of Moments (GMM) estimators (Hansen, 1982) to overcome these problems. Two broad 

categories of GMM dynamic panel estimators are difference GMM and system GMM. These 

techniques are summarised in Boxes 6 and 7 and more in-depth discussions of these estimators 

can be found in Roodman (2009b) and Bond (2002).  

Difference GMM transforms all predictors, usually by differencing and then uses the GMM with 

lags of the predictors used as instruments (Arellano & Bond, 1991). Different instruments are valid 

depending on the assumptions that can be made about the correlations between the predictors and 
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the within-child errors (see Bond, 2002). Since this technique estimates an equation in differences, 

it does not give estimates for time-invariant variables. This means that difference GMM has the 

same limitations as the fixed effects approach for the scenarios that can be tested in a DMSM.  

System GMM (Arellano & Bover, 1995; Blundell & Bond, 1998) does provide estimates for time-

invariant variables and so in our empirical comparison we used this approach. This is possible by 

making an additional assumption that allows another set of instruments to be used for an equation 

in levels (as opposed to the equation in differences). The lagged values used as instruments for the 

equation in differences are transformed (e.g. by differencing) to make them exogenous to the 

individual effects. System GMM estimates parameters using a system of these two sets of moment 

conditions. The additional instruments can dramatically improve efficiency over difference GMM 

estimation. 

The assumption made for these additional instruments to be valid is that the first differences of 

the instruments are uncorrelated with the individual effects. This is equivalent to a stationarity 

assumption for the initial conditions, specifically, that the deviations from the individual long-run 

means, at the first year, are not related to the individual effects. This assumption can be tested with 

a Difference in Sargan test. For more on this assumption see Blundell and Bond (1998), Roodman 

(Roodman, 2009b), and Roodman (2009a). 

Box 6 Summary of difference GMM dynamic panel model  
 

Description of 

approach: 

LDV included. Uses instrumental variables to deal with the 

endogeneity of the LDV and any other predictors. The predictors 

are transformed (by the first-difference or orthogonal deviations 

transformation) and then instrumented with lagged levels of the 

original predictors. 

Estimation: Generalised method of moments (GMM) 

Assumptions on 

individual effects and 

errors: 

𝐶𝑜𝑣(𝑦𝑖1,  𝜐𝑖,𝑡) = 0 (initial conditions predetermined),  

𝐶𝑜𝑣(𝑦𝑖1,  𝜇𝑖) ≠ 0, 𝐶𝑜𝑣(𝜇𝑖,  𝒙𝑖,𝑡) ≠ 0, 𝒙𝑖,𝑡 allowed to be correlated 

with  𝜐𝑖,𝑡 and earlier errors but not subsequent errors.  

Estimates of main 

effects of time-

invariant predictors: No estimates provided 

Implementation in the 

simulation: 

Change simulated and added to previous value. Estimates applied 

to the change in the predictors from last time-period. 
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Other advantages and 

disadvantages: Complex estimator with many options 

Box 7 Summary of system GMM dynamic panel model  
 

Description of approach: As for difference GMM DPM but a second ‘levels’ equation is 

included to form a system of equations. The variables in the 

levels equation are instrumented with their own first differences. 

Estimation: Generalised method of moments (GMM) 

Assumptions on 

individual effects and 

errors: 

As for difference GMM, plus 𝐶𝑜𝑣(𝜇𝑖,  𝛥𝒘𝑖,𝑡) = 0, where 𝑤 is 

any instrumenting variable (either 𝑥 or 𝑦)  

Estimates of main effects 

of time-invariant 

predictors: Estimated and included directly in the simulation 

Implementation in the 

simulation: As for OLS regression with an LDV. 

Other advantages and 

disadvantages: 

Complex estimator with many options, hard to meet additional 

assumption 

3. EMPIRICAL ASSESSMENT METHODS 

The OLS-LDV, random effects, fixed effects, hybrid and dynamic panel system GMM models 

were compared on their performance in generating simulated values designed to reproduce 

empirical data.  

The assessment of the statistical models for generating synthetic data in a DMSM will be illustrated 

in the context of the project Modelling the Early Life Course (MELC) (Milne et al., 2014). MELC 

is a discrete-time cohort micro-simulation, starting with a cohort at birth and ageing the individuals 

year-by-year. It simulates from birth to age 13 and assesses the influence of child, parental, and 

family factors on various outcomes. Time-variant attributes are updated at each year and no new 

individuals enter or leave as the simulation progresses through time. The primary dataset used to 

estimate parameters for the MELC micro-simulation was longitudinal data from the Christchurch 

Health and Development Study (CHDS) (Fergusson & Horwood, 2001). This dataset was used to 

test and illustrate the statistical models assessed.  The CHDS cohort consists of children born in 

1977 in Christchurch, New Zealand. The original birth cohort consisted of 1265 children, however 
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we only used the data collected annually from ages 8 to 13 (as these were the years for which our 

outcome variable for the empirical assessment, reading score, were collected). By age 8 there were 

1171 children remaining in the cohort; this remained relatively stable over time with 1172 children 

at age 9, 1067 at age 10, 1073 at ages 11, 12, and 13. 

One state-dependent continuous outcome variable was chosen for this empirical work: the child’s 

performance on the BURT reading test (Gilmore, Croft, & Reid, 1981). Scores can range from 0 

to 110 and the version of the test was taken every year from ages 8 to 13. It was important to 

choose a state-dependent variable for the empirical comparison as the within-person consistency 

or dynamism is a key aspect of the synthetic data to assess. Reading score is state-dependent or 

dynamic in the sense that, for an individual, their level of reading ability in the current year is 

influenced by their reading ability in the previous year.  

Table 2 Predictors used in the regression models 
 

Variable Categories/description 

Time-invariant Predictors Values available only at the child’s birth 

Gender Male; Female 

Mother’s education No formal qualifications; Secondary qualification; Tertiary qualification 

Father’s education No formal qualifications, Secondary qualification; Tertiary qualification 

Family’s socio-economic position Semi-skilled, Unskilled, unemployed; Clerical, technical, skilled; Professional, 

managerial 

Based on the Elley-Irving scale (Elley and Irving, 1976) 

Breast-feeding Duration in months 

Time-variant Predictors Values available at each year 

LDV The lagged dependent variable; The value of the reading score at the previous year 

Child’s age 8 to 13 years 

Mother’s hours worked The average number of hours of paid work performed per week by the 

mother/mother figure 

Home ownership Owned or mortgaged; Rented 

Father’s smoking The average number of cigarettes smoked per day by the father/father figure 

  

 

For each model the same set of predictor variables was used for consistency (listed in Table 2). 

Quadratic terms of the LDV and age were included where possible, in addition to the linear terms, 

since the relationship between both the LDV and reading score and between age and reading score 

was found to be curved. In the OLS-LDV and dynamic panel models, quadratic terms were 

included for both the LDV and age. In the random effects, fixed effects, and hybrid models, 

quadratic effects were included for age only.  

A cross-validation method was used to test each model. The dataset was randomly split in two, 

while at the same time ensuring that no data of any individual child was divided between the two 

datasets. The two datasets were, as much as possible, of equal sizes. The ‘training’ dataset was used 
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to estimate model coefficients. The coefficient estimates from the training dataset were applied to 

observed data values in the ‘testing’ dataset to generate a set of simulated data. For each set of 

coefficients (and its accompanying testing dataset), 1000 runs of the simulation were performed 

with each run producing a set of simulated data from which a series of summary statistics were 

obtained.  

Thirty cross validations were performed. The overall cross-validation process is represented 

visually in Figure 1. For simplicity, the figure only makes reference to taking a single mean from a 

simulated dataset and the absolute difference between a simulated and observed mean. The mean 

could be replaced with any set of statistics such as mean reading scores by a second variable or the 

percentiles of the reading scores.  The statistics (assessment measures) used are described in the 

‘Assessment Measures’ section below. Figure 1 shows the process for only one model. The process 

was repeated for each model but the training and testing datasets were not re-created. The same 

set of training and testing datasets were used for the assessment of each statistical modelling 

method. 

To simulate the current year in the simulation, the coefficients were applied to the observed 

predictor values at that year, except for the LDV coefficient which was applied to the reading score 

simulated in the previous year. As no reading score can be simulated at year 8 for the OLS-LDV 

and System GMM models (because reading scores only started at age 8), year 9 is the first simulated 

year for these techniques. For the RE, RE-AR(1), FE, and hybrid models it is possible to simulate 

reading scores at age 8 but, for consistency and a fair comparison, year 9 was also the first simulated 

year for these techniques. 
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Figure 1 Flowchart showing the cross validation method used to calculate the simulated means, 
observed means, and the mean absolute differences reported in the results 

 

The assumptions of each of the models discussed in the review were tested on the entire CHDS 

dataset (as opposed to using the cross-validation datasets). As most of the tests are performed on 

the residuals from the model or use the estimated individual effects, usually, separate tests were 

performed for each model. The details of the tests used for each assumption and the results are 

provided in Table 3.  

R version 3.0.2 was used to programme the simulations and cross-validation process. The OLS-

LDV and FE models were estimated using the lm function in R and the AR(1) random effects 

models were estimated using the glmmPQL R function. SAS 9.3 was used to estimate the variance 

components random effects and hybrid models. For these models the GLIMMIX procedure was 

used with the Satterthwaite approximation for the denominator degrees of freedom. 

The Stata function xtabond2 was used to fit the two-step system GMM dynamic panel models with 

orthogonal deviations. The time-variant variables were included as “GMM-style” instruments (as 

defined by Holtz-Eakin, Newey, and Rosen (1988)). These were collapsed as defined by Roodman 

(2009b) using the collapse option to reduce the instrument count. The Arellano-Bond test for 
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autocorrelation showed second order autocorrelation in the first differences (equivalent to the 

within-child errors being serially correlated of order 1) for 29 of the 30 training datasets hence the 

lags used for instruments were restricted to lag 3 and longer. Third order autocorrelation in the 

differences was only found for 3 of the 30 training datasets. The final model had 44 instruments 

to estimate 16 coefficients. The time-invariant variables were treated as exogenous because failure 

to do resulted in anomalous estimates, possibly due to the proliferation of instruments that are 

created when specifying GMM-style instruments.  

3.1. Assessment measures 

The measures calculated in order to compare the six models are described in this section. We first 

present general definitions of the simulated mean, observed means, and mean absolute differences 

that are referred to throughout the results. We then provide some further clarification for the 

specific measures used to assess six different data characteristics. The six data characteristics 

assessed were: overall distributions, means across time, dynamism, child-specific standard 

deviations, means by predictor variables, and a general measure of model prediction quality (the 

prediction sum of squares). 

3.1.1. General definition of the plotted simulated means 

Let 𝑥𝑖𝑗𝑘𝑎 be statistic 𝑘, for 𝑘 in 1 to 𝑀, for age a, for a in 9 to 13, on the simulated data for 

simulation j, for j in 1 to 1000, for cross-validation (CV) dataset i, for i in 1 to 30. 

Statistic 𝑘 could be mean 𝑘 in a set of three means (𝑀 = 3) that are the mean reading scores by 

the value of a second variable with three levels (e.g., father’s education). Or statistic 𝑘 could be 

percentile 𝑘 in a set of percentiles ranging from 0 to 100 (M=101) calculated for the reading scores 

or the percentiles for another statistic calculated for each child such as a correlation or standard 

deviation (e.g. the correlation between reading scores and lagged reading scores for each child and 

then calculate the percentiles on this set of correlations). 

Let 𝑥𝑖.𝑘𝑎 be the mean over all simulations for statistic k, at age a, for CV dataset i.  

𝑥𝑖.𝑘𝑎 =
∑ 𝑥𝑖𝑗𝑘𝑎

1000
𝑗=1

1000
 

Let 𝑥..𝑘𝑎 be the mean over all simulations and CVs for statistic k, at age a.  
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𝑥..𝑘𝑎 =
∑ 𝑥𝑖.𝑘𝑎

30
𝑖=1

30
 

The means could be plotted at this stage to compare models at a specific age, but, to enable ease 

of comparison of models, the summary measures were condensed further by averaging over age to 

give: 

𝑥..𝑘. =
∑ 𝑥..𝑘𝑎

13
𝑎=9

5
 

These are the means plotted for the simulated data in Figures 2 to 4. 

3.1.2. General definition of the plotted observed means 

Let 𝑜𝑖𝑘𝑎 be observed statistic k, at age a, for CV dataset i. 

Let 𝑜.𝑘𝑎, be the mean across all CV datasets for statistic i at age a.   

𝑜.𝑘𝑎 =
∑ 𝑜𝑖𝑘𝑎

30
𝑖=1

30
 

The summary measures were condensed further by averaging over age to give: 

𝑜.𝑘. =
∑ 𝑜𝑖𝑘𝑎

13
𝑎=9

5
 

These means were plotted with the 𝑥..𝑘. in Figures 2 to 4. 

3.1.3. General definition of the tabled mean absolute differences 

Let 𝑑𝑖𝑘𝑎 be the difference between observed statistic k and the mean statistic k on the simulated 

data at age a for CV i. 

𝑑𝑖𝑘𝑎 = 𝑜𝑖𝑘𝑎 − 𝑥𝑖.𝑘𝑎 

Let 𝑑.𝑘𝑎 be the mean of the absolute differences (between observed statistic k and the simulated 

mean statistic k) over the 30 CVs. 

𝑑.𝑘𝑎 =
∑ |𝑑𝑖𝑘𝑎|30

𝑖=1

30
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Let 𝑑..𝑎 be the mean of the absolute values of the 𝑑.𝑘𝑎 across the full set of statistics (k = 1 to  M) 

(e.g. over the categories of a predictor value or over all 101 percentiles) at age a. 

𝑑..𝑎 =
∑ |𝑑.𝑘𝑎|𝑀

𝑘=1

𝑀
 

The differences could be examined at specific ages at this stage, but to condense the summary 

results into a single table the mean was taken over age to give an overall mean absolute difference 

(between observed and simulated). These are the mean absolute differences presented in Table 4. 

𝑑... =
∑ |𝑑..𝑎|13

𝑎=9

5
 

3.1.4. Closeness of overall distributions 

The overall distribution of reading scores simulated under different statistical models was 

compared to the distribution of the observed reading scores using percentiles. A cumulative 

distribution plot was used to show the percentiles from the minimum to the maximum. The values 

of 101 percentiles from 0 to 100 were calculated. The mean percentiles for the simulated and 

observed data were calculated as described above in the general definition for simulated and 

observed means. To quantify the difference between the observed and simulated distributions, the 

mean absolute difference in percentiles was calculated as described in the general definition above. 

3.1.5. Means over time 

The mean reading scores at each age were calculated as described in the general definitions above 

for the simulated and observed means and the absolute differences. Statistic k here refers to a single 

mean (k in M, where M=1). 

3.1.6. Degree of dynamism (child-specific correlations) 

Dynamism exists when there is a relation in a variable from one time-point to the next; the stronger 

this relationship, the stronger the dynamism. The degree of dynamism in the simulated reading 

scores under the various statistical techniques was compared to that in the observed reading scores. 

The measure used to quantify the degree of dynamism was the correlation between the reading 

scores with the lagged reading scores (the LDV). For a child with reading scores at every age from 

8 to 13, five pairs of values are used to calculate this correlation (where a pair is a set of one current 

and one lagged value). This was calculated individually for each child in the data, providing a vector 

(length equal to the number of children in the simulation) on which 101 percentiles from 0 to 100 



INTERNATIONAL JOURNAL OF MICROSIMULATION (2015) 8(2) 83-127 103 

MC LAY, LAY-YEE, MILNE, DAVIS        Regression-Style Models for Parameter Estimation in Dynamic Microsimulation: An Empirical Performance Assessment 

were calculated. The means and differences were calculated as described in the general definitions 

above with statistic k referring to percentile k (of the distribution of correlations), for k in 1 to 

M=101. Plotting these 101 percentiles results in the cumulative distribution plot displayed in Figure 

3. 

3.1.7. Child-specific standard deviations 

For each child, the standard deviation of their reading scores was calculated. Means and differences 

for plotting and tabling were calculated in the same way as described for ‘Degree of dynamism’ 

except that rather than using a vector of individual correlations on which percentiles were 

calculated, a vector of individual standard deviations was used. 

3.1.8. Means by other predictors 

The mean reading scores by the values of other predictors were calculated as described in the 

general definitions above for the simulated and observed means and the absolute differences. 

Statistic k here refers to mean k, for k in 1 to M, where M is equal to the number of levels 

(categories or unique values for continuous predictors) of the predictor variable. 

3.1.9. PRESS statistic 

As well as the means and differences described above, we also calculated the prediction sum of 

squares (PRESS) statistic, a commonly used measure to assess model fit. It measures the closeness 

of the predicted values of reading score for the test dataset (generated by using the coefficients 

from the model estimated from a training dataset) to the observed reading scores in the test dataset. 

Smaller values are better indicating less distance between the predicted and observed values. We 

used the definition of the standard PRESS as provided in (Mahmood & Khan, 2009). This 

definition is for a single cross-sectional dataset but as we have 30 CV datasets, which are used for 

1000 simulations, and five simulated ages, we calculated this PRESS statistic for each simulation 

by age by CV combination. We define the PRESS statistic here using notation specific to our 

situation. 

Let 𝑦𝑖𝑎𝑐 be the observed reading score for CV dataset i (i in 1 to 20), at age a (a in 9 to 13), for 

child c (c in 1 to N) and let 𝑦̂𝑗𝑖𝑎𝑐 be the model predicted reading score (without the addition of any 

stochastic variation) for simulation j (j in 1 to 1000), for CV i, at age a, for child c.  For each CV, 

for each simulation, for each age, the 𝑦̂𝑗𝑖𝑎𝑐 were subtracted from the 𝑦𝑖𝑎𝑐 to give: 
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𝑑𝑗𝑖𝑎𝑐 = 𝑦𝑖𝑎𝑐 − 𝑦̂𝑗𝑖𝑎𝑐 

The sum of squares of the 𝑑𝑗𝑖𝑎𝑐 was taken over the individual children to give what can be thought 

of as a simulated sum of squares: 

𝑆𝑗𝑖𝑎 = ∑ 𝑑𝑗𝑖𝑎𝑐

𝑁

𝑐=1

 

An observed sum of squares was calculated by subtracting the mean observed reading score from 

each observed reading score, for each CV by age combination and then taking the sum of squares 

of these differences: 

𝑂𝑖𝑎 = ∑ (𝑦𝑖𝑎𝑐 −
∑ 𝑦𝑖𝑎𝑐

𝑁
𝑐=1

𝑁
)

𝑁

𝑐=1

 

Dividing the simulated sum of squares by the observed sum of squares gives the standard PRESS 

for a single simulation dataset, i, for a single CV, j, at a specific age, a: 

𝑃𝑅𝐸𝑆𝑆𝑗𝑖𝑎 =
𝑆𝑗𝑖𝑎

𝑂𝑖𝑎
 

These PRESS statistics were then averaged over simulations, followed by CVs, and finally averaged 

over age, to give a value for the mean PRESS, 𝑃𝑅𝐸𝑆𝑆…, which is presented in Table 4.  

𝑃𝑅𝐸𝑆𝑆… =
∑ ∑ ∑ 𝑃𝑅𝐸𝑆𝑆𝑗𝑖𝑎

1000
𝑖=1

30
𝑗=1

13
𝑎=9

1000 × 30 × 5
 

3.2. An overall summary measure across all data characteristics 

The mean absolute differences (MADs) reported in Table 4 can illuminate which models were 

performing the best for different data characteristics but, additionally, an overall summary measure 

was created to compare models across all data characteristics. The means presented in Table 4 were 

standardised across each row (for each data characteristic) by taking the values in that row, 

subtracting the mean and then dividing by the standard deviation of these values. This created 

standardised mean absolute differences (SMADs) where more negative values indicated simulated 

data that was closer to the real data.  By standardising across rows, the means became comparable 

down columns and an overall summary measure could be created by taking the mean down the 
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column for each model. The summary mean allows an overall comparison between the techniques 

of the closeness of the simulated data to the real data across all the data characteristics assessed.  

Weighted means were computed because too much weight would be given to the ‘means by 

predictors’ data characteristics if a raw mean were computed. We employed two weighting schemes. 

In the first we treated the ‘means by time-invariant predictors’ and ‘means by time-variant 

predictors’ characteristics as a single data characteristic when taking an overall average summary 

measure. Using a weight of 1/5 for each of the five ‘means by time-invariant predictors’, a weight 

of 1/3 for each of the three ‘means by time-variant predictors’, and a weight of 1 for all other data 

characteristics accomplished this purpose. In the second weighting scheme the eight ‘means by 

predictors’ characteristics were considered a single data characteristic To accomplish this, the 

weights for the five measures for time-invariant predictors should sum to 0.5 (giving each a weight 

of 0.5/5=0.1) and the weights for the three measures for time-variant predictors should sum to 0.5 

(giving each a weight of 0.5/3=1/6). The weights for the other data characteristics remained at 1.  

The mean absolute differences were also examined for each age separately; tables equivalent to 

Table 4 were created for each age (available in the online Appendix). The overall weighted mean 

summary measures for each model were computed at each age and those using the first weighting 

scheme are shown in Table 5. 

3.3. Significance Testing 

Comparing the simulated and observed means (by examining graphs) and the mean absolute 

differences provides a descriptive comparison but does not tell us if one model is significantly 

better than another. Significance testing for each data characteristic was performed for this 

purpose. 

Paired t-tests, paired by CV, were used to test whether pairs of models differed significantly for a 

specific statistic (e.g. a specific percentile, a specific category or value of a predictor). The values 

used for the tests were the 30 absolute differences (between simulated and observed values) 

averaged over the 1000 simulations, averaged over age (the 𝑑𝑖𝑘𝑎 averaged across a, giving 30 values 

for a specific k) for any two models being compared. The values were averaged across age so that 

the t-tests corresponded to the mean absolute differences presented in Table 4. A comparison of 

values from different models found that values from the same CV were found to be more similar 

to each other than values from different CVs (inspected by scatterplots) for many of the data 

characteristics and hence paired t-tests were used through-out. 
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Table 3 Assumptions made for each model.  A indicates that the assumption is made by the model. Following this may be either   

the result of testing for the assumption or a comment 
(A dash (-) indicates that the test is not relevant) 

 Assumption Test used OLS-LDV RE RE-AR(1) FE HYBRID GMM Dynamic Panel 

1 
No individual effects: 

,  

LR test for non-zero 

, p-value based on 

a mixture of chi-

squares (COVTEST in 

the GLIMMIX 

procedure, SAS 9.3). 

A, LDV in model: 

χ2(1)=0.00, p=.9999; 

LDV not in model: 

χ2(1)=7958, p<.0001 

- - - - - 

2 

Individual effects 

independent of within-

child errors: 

 

Test for Pearson’s 

correlation between 

estimated individual 

effectsa and residuals 

- 

A, 

, 

p<.0001 

 

µis eliminated by 

transformation  


A, 𝐶𝑜𝑟(𝜇̂𝑖,  𝜐̂𝑖,𝑡) =

0.079, p<.0001 

µis eliminated by 

transformation 
3 

Individual effects 

independent of each 

other :  

Assumed by virtue of 

the individuals being 

randomly selected 

and from different 

families 

- A A A 

4 
 

Shapiro-Wilk test on 

the empirical BLUPsb 

of individual effects 

- 

A, W=0.99, p=.0001, 

but plotting shows 

distribution close to 

normal 

A, W=0.99, p<.0001, 

but plotting shows 

distribution close to 

normal 

A, W=0.99, p=.0001, 

but plotting shows 

distribution close to 

normal 

5 

Cross-sectional 

‘between’ effects 

equal to within ‘fixed’ 

effects:  

Hausman test 
A, χ2(5)=2.55, 

p=.7693 
A, χ2(5)=2.55, p=.7693 

A, χ2(5)=2.55, 

p=.7693 
Only λestimated 

λ and κestimated 

separately 
Only λestimated 

6 

Exogenous time-

invariant predictors 

(TIPs): 

, 

, 

C statistic from 

endogtest in stata’s 

ivreg2c 

A, null of exogeneity 

not rejected for any 

TIPsd. LDV endogenous 

by definition. 

A, null of exogeneity 

rejected for most TIPse 

A, no convenient 

test – refer to tests 

for RE model  

TIPs not used 

A, null of exogeneity 

rejected for half of 

the TIPse 

Diff GMM: TIPs not 

used. System GMM: 

Assumption does not 

need to be made 
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7 

Exogenous time-variant 

predictors (TVPs): 

, 

 

C statistic from 

endogtest in stata’s 

ivreg2 or xtivreg2c 

A, null of exogeneity 

rejected for one TVPd 

A, null of exogeneity 

rejected for two TVPse   

A, no convenient 

test – refer to tests 

for RE model 

A, null of exogeneity 

not rejected for any 

TVPsf 

A, null of exogeneity 

rejected for one TVPe 

Assumption does not 

need to be madeg 

8 
: 

Within-child errors 

serially uncorrelated 

System GMM: 

Arellano-Bond test for 

AR in first differences 

Other models: xtserial 

in stata (Wooldridge 

2002) 

A, F(1, 1003)=398.5, 

p<.0001  

A, F(1, 1043)=115.5, 

p<.0001 

Assumes an AR(1) 

structureh 

A, F(1, 1043)=115.5, 

p<.0001 

A, F(1, 1043)=115.5, 

p<.0001  

Assumption not made 

but choice of 

instruments depends 

on degree of serial 

correlation. AR(2): 

z=4.33, p<.0001. 

AR(3): z=-1.60, 

p=.109. 

9 

: 

Within-child errors 

independent across 

individuals (no cross-

sectional dependence) 

Pesaran’s test 

(Pesaran 2004): xtcsd 

in stata 

-   
A, statistic=6.62, 

p<.0001 

A, no convenient 

test – refer to test for 

RE model 

A, statistic=6.45, 

p<.0001  

A, no convenient 

test – refer to tests 

for RE and FE models 

A, no convenient 

test – refer to tests 

for RE and FE models   

10 

Validity of moment 

conditions (validity of 

instruments)  for 

Difference GMM  

Hansen test - - - - - 
A, χ2(22)=24.47, 

p=.323 

11 

Validity of additional 

moment conditions for 

System GMM 

Difference in Hansen 

test 
- - - - - 

A, χ2(4)=16.27, 

p=.003 

12 
Stationarity of within-

child errors 

Hadri and Larsson 

(2005) 
Z=-2.80, p=.0051 Z=19.31, p<.0001 

Z=19.46, p<.0001 
Z=19.34, p<.0001 Z=19.32, p<.0001 

System GMM: Z=-2.80, 

p=.0051 

         

a.Estimated individual effects were the empirical BLUPs (best linear unbiased predictors) estimated by SAS 
b BLUP = best linear unbiased predictor. Empirical BLUPs estimated in SAS by requesting fitted values with and without BLUPS and taking the difference. 
c The tests utilised additional variables not included in any models as excluded instruments (each tested for exogeneity and relevance).  Predictors were tested individually with all other variables in the model treated as 

exogenous. Each model was checked for identification and weak. Significance was set at the .05 level. Full results of the tests and stata code are available in the online Appendix. 

d LDV included in the model. cluster option not used (panel data structure ignored).  

e LDV not included in the model. cluster option used to indicate panel data structure. 

f LDV not included in the model. cluster option used to indicate panel data structure. fe option used. 

g Although the exogeneity if variables should be investigated so that the analyst has some indication of what variables need to be instrumented and which do not. 
h A test for whether the AR(1) structure was defensible compared to an unstructured structure was attempted in  SAS but the model with the unstructured model would not converge 
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The t-values from the tests are reported in tables in the online Appendix. The t-values were 

not adjusted for multiple testing but left to be interpreted based on their relative size or a specific 

level of significance can be assessed by obtaining the relevant critical value. For interpretation in 

the results section, we considered models to be significantly different if the t-value was greater than 

2.46 (a .01 level of significance with the 29 degrees of freedom associated with the tests). 

4. RESULTS 

4.1. Testing Model Assumptions 

Table 3 shows the results of testing the various assumptions made by each of the models on entire 

CHDS dataset. For all tests, a small p-value provides evidence of a violated assumption. Evidence 

of violated assumptions was present for all of the models and choosing a model that is theoretically 

best based on the assumptions testing is not clear. Some assumptions may be more important than 

others but testing the effect of breaking each individual assumption is beyond the scope of this 

article. 

The OLS-LDV model assumes no individual effects and so the assumptions regarding individual 

effects do not apply. This may make it appear that the number of violated assumptions is small 

compared to other models; however the violation of this key assumption, along with the fact that 

the inclusion of the LDV creates bias by definition, indicates that perhaps one of the other models 

should be preferred, even if they also have assumptions that are violated. The empirical assessment 

aims to test which models perform the best on our specific dataset, even though, for each, there is 

evidence of violated assumptions. Although the system GMM dynamic panel model does not make 

many of the assumptions the other models make, the violation of the assumption regarding the 

additional moment conditions (necessary to estimate effects for time-invariant variables) could be 

very important; again, the empirical assessment aims to give some light as to how important. 
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Table 4 Mean absolute differences (MAD) (smaller is better) and standardised mean absolute differences (SMAD) (more negative is better) between 
simulated and observed data. 
 

Data characteristic OLS – LDV RE) RE-AR(1) FE HYBRID SYSTEM GMM 

 MAD SMAD MAD SMAD MAD SMAD MAD SMAD MAD SMAD MAD SMAD 

PRESS statistica 0.53 -0.11 0.44 -0.66 0.81 1.59 0.39 -0.99 0.44 -0.64 0.68 0.80 

Overall distributions 1.47 -0.97 2.66 0.07 4.70 1.86 2.08 -0.44 2.69 0.10 1.87 -0.62 

Means across time 0.50 -1.42 0.69 -0.05 0.70 -0.01 0.73 0.23 0.93 1.66 0.64 -0.41 

Child-specific correlations (dynamism) 0.09 -1.45 0.23 0.85 0.24 0.92 0.15 -0.46 0.23 0.82 0.14 -0.68 

Child-specific standard deviations 0.76 -1.75 1.07 -0.27 1.38 1.19 1.16 0.14 1.13 0.02 1.27 0.66 

Time invariant predictors:             

Gender 0.72 -1.51 1.16 0.19 1.15 0.15 1.38 1.02 1.37 0.98 0.90 -0.82 

Breast-feeding 1.69 -0.77 1.82 -0.42 2.74 1.97 1.77 -0.57 1.97 -0.04 1.92 -0.17 

Father’s education 0.85 -1.64 1.19 -0.15 1.51 1.18 1.38 0.64 1.34 0.47 1.11 -0.51 

Mother’s education 0.91 -1.46 1.29 -0.04 1.68 1.43 1.35 0.19 1.45 0.56 1.12 -0.67 

Family’s socio-economic status 0.94 -1.49 1.06 -0.72 1.38 1.36 1.21 0.28 1.25 0.56 1.17 0.01 

Time-variant predictors:             

Home-ownership 1.07 -0.64 1.29 -0.45 1.60 -0.18 1.20 -0.53 1.57 -0.21 4.19 2.01 

Mother’s hours worked 4.81 -0.61 4.95 -0.49 7.88 1.86 4.63 -0.75 5.01 -0.44 6.10 0.43 

Father’s smoking 5.31 -0.80 5.73 -0.51 8.42 1.36 5.34 -0.78 5.80 -0.46 8.17 1.19 

Weighted means              

Scheme 1b  -1.11  -0.11  1.11  -0.27  0.30  0.08 

Scheme 2c  -1.12  -0.07  1.11  -0.28  0.34  0.02 

             

a The PRESS statistic is not a mean absolute difference but a standardised measure of the distance between the observed and predicted values.  Smaller values are better. 
b Time-invariant predictors given a weight of 1/5 each, time-variant predictors given a weight of 1/3 each. Other characteristics each given a weight of 1. 
c Means by predictor variables given a combined weight of 1 with the time-invariant predictors each given a weight of 0.1 and the time-variant predictors each given a weight of 1/6. Other characteristics each given a 

weight of 1. 
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4.2. Comparison of means between models 

Figures 2 to 4 display the means, for each of the assessment measures described above, from data 

simulated using the coefficients from each of the models, alongside the observed means. Table 4 

shows a summary of the mean absolute differences between the simulated and observed means. 

These values were based on taking the mean, over the cross-validations, of the absolute differences 

between simulated and observed statistics. In contrast, for the means plotted in the graphs, the 

overall mean of the simulated statistics are shown; means of absolute differences were not taken. 

A comparison of the simulated and observed means in the graphs is an examination of bias. The 

simulated means show the average difference, over the cross validations, rather than the average 

absolute difference. Points or lines that look close to the observed values on the graphs could have 

a large variance across cross-validations. The mean absolute differences in Table 4 are similar in 

concept to the mean squared error – they incorporate the aspects of bias (accuracy – how close we 

get to the observed values on average) and variance across cross-validations (precision). The means 

in the graphs only inform about bias. 

The comparison of the means in the graphs and the mean absolute differences in Table 4 provides 

a descriptive comparison between the models and allows a ranking across them; however, it does 

not tell us if one model is significantly better than another. Significance testing for each data 

characteristic was performed for this purpose. A brief summary of the results is included in this 

section and the full set of results is provided in the online Appendix. A .01 level of significance was 

used. 

Figure 2a shows the cumulative distributions for the observed reading scores and the reading scores 

simulated under the different statistical models. All models reproduced the distribution reasonably 

well. The values in Table 4 reveal that the reading scores simulated using the OLS-LDV model 

were closest to the observed distribution, followed by the system GMM dynamic panel model (not 

significantly different from OLS-LDV), and then the fixed effects model. The OLS-LDV model 

was significantly better than the RE and hybrid models and the system GMM model was 

significantly better than the hybrid model. The random effects AR(1) model performed the worst 

(significantly worse than all other models). 

The mean reading scores by age are shown in Figure 2b for the observed data and the data 

simulated under the different statistical modelling methods. All the models appear to perform well. 

The means calculated from the OLS-LDV model were the closest to the observed means, followed 
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by the system GMM model (see Table 4) (models only significantly different at age 13). The OLS-

LDV model performed significantly better than the hybrid model at all ages. 

Figure 2 Comparison of the observed reading scores and the reading scores simulated  
under the six models  
(a) Cumulative distribution curves for the overall distributions.  
(b) Means by age. 

 

Figure 3a shows cumulative distributions of the child-specific correlations. All of the models 

underestimated the degree of dynamism. The correlations from the OLS-LDV model were closest 

to the observed distribution, followed by those from the system GMM model (see Table 4). The 

differences between these models were significant at all percentiles tested. The system GMM model 

performed significantly better than the hybrid, RE, and RE-AR(1) models. 

Figure 3b shows cumulative distributions of the child-specific standard deviations. All the models 

perform reasonably well, but the standard deviations calculated under the OLS-LDV model tracked 

the closest to the observed distribution. The distributions for the standard RE and hybrid models 

were extremely similar. Table 4 revealed that the standard RE model performed second best, 

followed by the hybrid model. Fourth was the FE model which also had a very similar shape to the 

RE and hybrid models. Significance results varied across percentiles and no simple conclusions 

could be made. 
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Figure 3 Cumulative distribution curves of the observed reading scores and the  

reading scores simulated under the six models 

(a) Child-specific correlations of current and lagged score 

(b) Child-specific standard deviations. 

 

Figure 4 shows the mean reading scores by the values of a predictor variable for six of the eight 

predictors in the models. Recall that the values in the graph inform only about bias. For gender 

(4a),  the graph shows the means from the system GMM model being the closest to the observed 

means, with those from the RE-AR(1) and OLS-LDV model looking next best.  However Table 4 

ranks the OLS-LDV model as the best performer with system GMM ranked second. The system 

GMM technique produces means that have a larger variance across the cross-validations such that 

the absolute values of the differences (means in Table 4) from the observed means are smaller for 

the OLS-LDV model. The OLS-LDV model was significantly better than the system GMM models 

for the mean for girls only. The OLS-LDV model performed significantly better than the RE, RE-

AR(1), hybrid, and FE models. The FE model ranked last performing significantly worse than 

system GMM and RE.
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Figure 4 Comparison of observed and simulated mean reading scores by predictors. (a) By gender. (b) By father’s education. (c) By socio-economic status. (d) 

By breast-feeding. (e) By mother’s working hours. (f) By home-ownership. Lines joining points are added to make distinctions between models more clear. 
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For father’s education (4b) (a time-invariant predictor), the situation is similar to that for gender: 

from the graph, the system GMM model looks the best but Table 4 revealed that the OLS-LDV 

model performed the best in terms of absolute differences indicating greater variability in means 

across CVs for the GMM models. Table 4 ranked the system GMM model second; it was 

significantly worse than the OLS-LDV model at the tertiary and secondary levels of education. The 

OLS-LDV model was significantly better than the RE-AR(1) hybrid model at all categories.  

The results for mother’s education (plot not shown) showed a similar pattern to that seen for 

father’s education except with the order of hybrid and FE models switched. The only comparison 

that was significant at all categories was that between the OLS-LDV model and the RE-AR(1) 

model, which ranked last. 

For socio-economic status (SES) (4c), all models matched the observed pattern of means 

reasonably well. Table 4 shows the OLS-LDV model ranking the best, followed by the standard 

RE model. The significance results varied by SES category, with the only comparisons consistent 

across all categories being the non-significance between system GMM and RE, hybrid, and FE and 

between REAR1 and hybrid. 

For breast-feeding (4d), all the models appear to follow a similar pattern to each other except for 

the means from the RE-AR(1) model which follow a smoother line. Table 4 revealed RE-AR(1) as 

the worst performer and OLS-LDV as the best performer, followed by FE. OLS-LDV was 

significantly better than RE-AR(1) at all durations of breast-feeding tested. 

In order to present a clear plot, mother’s working hours (4e), was categorised and the mean reading 

scores calculated for each category. From the graph we judge that means from the OLS-LDV and 

FE models are closest to the observed. This is also found in Table 4 with FE ranking first and 

OLS-LDV ranking second. The only clear pattern from the significance testing was that the RE-

AR(1) model (ranked last) performed significantly worse than the FE and RE models. 

For home-ownership (4f), system GMM was clearly the worst performer, being significantly worse 

than all other models for the ‘not owned’ category. In Table 6, which shows the coefficients for 

each of the models, we see that the coefficient for home-ownership is quite different to that for 

the other models, resulting in the difference observed in the figure. From the graph we see that the 

OLS-LDV and FE models appear to be the best.  Table 4 ranked OLS-LDV the best and then FE. 

The OLS-LDV model performed significantly better than all models for the ‘owned’ category. For 

the ‘not owned’ category, most of the models differed significantly from each other, except for 
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OLS-LDV with RE, hybrid and FE and for RE-AR(1) with hybrid. 

For father’s smoking (plot not shown), the ranks in Table 4 are similar to those for the other time-

variant predictors with OLS-LDV ranking first and FE ranking second. The OLS-LDV model was 

significantly better than all other models for the tests conducted at zero and four cigarettes smoked 

per day except for system GMM at four cigarettes per day. 

To give an overall ranking of the models across all the data characteristics assessed, a weighted 

mean of the standardised mean differences was calculated for each model (last two rows in Table 

4).  By this criterion, the OLS-LDV model performed the best on average, followed by the FE 

model. The standard RE model came third, the system GMM dynamic panel model came fourth, 

the hybrid model came fifth, and the RE-AR(1) model ranked last. The results were also examined 

separately for each age (tables by age available in the online Appendix) and the overall summary 

measure weighted according to scheme 1 is shown for each age in Table 5. Although there are 

trends over time within models, the pattern of the means across models at a given age is the same 

and the overall conclusions that would be made from examining the results separately for each age 

are the same as what are made when averaging across age. 

Table 5 Overall weighted mean of the standardised mean absolute differences  
(using weighting scheme 1a) by age for each model 

 AGE MEAN OVER AGEb 

MODEL 9 10 11 12 13  

OLS – LDV  -1.11 -1.10 -1.10 -1.06 -1.04 -1.11 

RE  -0.08 -0.07 -0.06 -0.11 -0.11 -0.11 

RE-AR (1)  1.22 1.18 1.09 0.94 0.74 1.11 

FE   -0.16 -0.24 -0.27 -0.30 -0.27 -0.27 

Hybrid  0.42 0.34 0.28 0.28 0.24 0.30 

System GMM  -0.29 -0.09 0.05 0.25 0.44 0.08 

       

a Time-invariant predictors given a weight of 1/5 each, time-variant predictors given a weight of 1/3 each. Other characteristics each 
given a weight of 1. 

b The weighted mean of the SMADs that were averaged over age.  This is the same value as shown in the second-to-last row of Table 4 
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Table 6 Coefficients and standard errors estimated on the full dataset for each of the techniques 
 

Variable  OLS – LDV RE RE-AR(1) FE Hybrid System GMM 

DPM 2 Step a 

System GMM 

DPM 1 Step a 

Reading score previous centred (LDV)  0.90  

(0.01) 
    

0.83 

(0.04) 

0.82 

(0.04) 

Reading score previous centred squared (LDV squared) 
 -0.00  

(0.00) 
    

-0.01 

(0.00) 

-0.01 

(0.00) 

Child’s age centred 
 -0.33  

(0.09) 

8.02  

(0.05) 

7.98  

(0.10) 

8.01 

(0.05) 

8.02 

(0.05) 

0.23 

(0.41) 

0.27 

(0.41) 

Child’s age centred squared 
 0.13  

(0.04) 

-0.52  

(0.03) 

-0.06  

(0.03) 

-0.51 

(0.03) 

-0.52 

(0.03) 

-0.01 

(0.10) 

-0.02 

(0.10) 

Gender (reference: Female) 
 0.07  

(0.21) 

-3.78  

(0.98) 

-3.31  

(0.75) 
 

-3.79 

(0.98) 

0.51 

(0.34) 

0.49 

(0.35) 

Father’s education (reference: No formal education) Tertiary 1.43  

(0.39) 

6.78  

(1.79) 

5.10  

(1.37) 
 

6.54 

(1.81) 

0.68 

(0.58) 

0.51 

(0.57) 

Secondary 0.98  

(0.25) 

4.60  

(1.18) 

3.57  

(0.90) 
 

4.56 

(1.18) 

0.67 

(0.36) 

0.71 

(0.36) 

Mother’s education (reference: No formal education) Tertiary 1.01  

(0.32) 

7.02  

(1.53) 

5.16  

(1.17) 
 

6.76 

(1.55) 

1.18 

(0.55) 

1.05 

(0.54) 

Secondary 0.42  

(0.26) 

2.47  

(1.21) 

1.65  

(0.92) 
 

2.31 

(1.21) 

0.47 

(0.37) 

0.40 

(0.35) 

Family’s socio-economic status (reference: Semi-skilled) Professional 0.22  

(0.39) 

4.28  

(1.79) 

3.37  

(1.37) 
 

3.76 

(1.82) 

0.71 

(0.72) 

0.22 

(0.77) 

Clerical 0.03  

(0.27) 

2.43  

(1.23) 

1.97  

(0.93) 
 

2.02 

(1.25) 

0.18 

(0.54) 

-0.14 

(0.56) 
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Breast-feeding 
 0.07  

(0.03) 

0.26  

(0.13) 

0.20  

(0.10) 
 

0.25 

(0.13) 

0.05 

(0.03) 

0.06 

(0.03) 

Mother’s hours worked 
 0.00  

(0.01) 

0.01  

(0.01) 

0.00  

(0.01) 

0.01 

(0.01) 

(D, M): 0.01, 0.01 

(0.01), (0.04) 

-0.02 

(0.04) 

0.01 

(0.04) 

Father’s smoking 
 0.00  

(0.01) 

-0.03  

(0.02) 

-0.01  

(0.02) 

-0.03 

(0.02) 

(D, M): -0.02, -0.09 

(0.02), (0.07) 

-0.16 

(0.12) 

-0.24 

(0.11) 

Home-ownership (reference: owned/mortgaged) 
 -0.72  

(0.30) 

-1.48  

(0.43) 

-1.15  

(0.42) 

-1.30 

(0.44) 

(D, M): -1.31, -3.75 

(0.45), (1.62) 

3.66 

(2.98) 

2.29 

(3.18) 

         

D:  For the hybrid technique, estimate of the within / fixed effect calculated from the deviation variable.  

M:  For the hybrid technique, estimate of the between/cross-sectional effect calculated from the mean variable. 
a Windmeijer corrected standard errors are displayed 
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4.3. Model coefficients 

Table 6 shows the coefficients estimated from each technique using the entire CHDS dataset. For 

interest, the coefficients estimated from a one-step system GMM model are also shown, although 

this model was not included in the empirical assessment as the coefficients were very similar. 

5. DISCUSSION 

Micro-simulation models are being increasingly used, particularly in areas with policy application 

(Spielauer, 2010). To date however, there has been little discussion on the different models options 

for estimating the parameters that drive the MSM and how to choose between them.  Technical 

reports for DMSMs (found in the ‘grey’ literature) sometimes provide comments on different 

techniques considered by the group, but examples of systematic comparisons are lacking. 

Hence, the aim of this paper, published in a peer-review journal, was to demonstrate some ways of 

comparing regression-style modelling techniques in terms of how they perform at generating 

simulated data when their parameter estimates are applied to a discrete-time DMSM. This can be 

thought of as a kind of validation of a DMSM. Most reported validation for microsimulation 

focuses on aggregate means over time or by some key groups. The longitudinal unit-specific aspects 

of validation (such as dynamism and child-specific standard deviations) are not often examined as 

undertaken here. 

The statistical techniques assessed were an ordinary least squares regression with a lagged 

dependent variable (OLS-LDV), two random effects techniques: one with a variance components 

within-child error structure and one with an autoregressive order 1(AR(1)) within-child error 

structure, a hybrid model, and a dynamic panel model (DPM) estimated with system general 

method of moments (GMM). We simulated reading scores under the coefficients and assumptions 

of each model and assessed how well each simulated set of reading scores compared to the 

observed reading scores from our birth cohort data. The assessment does not provide general 

results on which modelling techniques are best for generating artificial data but provides an 

illustration of how one might go about comparing and testing different model specifications.  

In addition to illustrating how simulated data from different models can be compared, a review of 

the assumptions of these commonly used modelling techniques has been provided. In our data 

assumptions were violated for all the models and hence the empirical assessment also provided an 

indication of the importance of meeting these assumptions for our MSM. We found that it was still 
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possible to generate synthetic data that represent reality when the assumptions of a statistical model 

are violated. 

Although the OLS-LDV technique had the strictest set of assumptions, it had a number of 

advantages. It was simple to execute in statistical software and to implement in the simulation and 

performed the best overall in our assessment comparing the simulated to observed reading scores. 

The fixed effects technique ranked second in the empirical assessment; however it was not 

considered a feasible modelling option for out MSM because scenarios on time-variant variables 

would not be able to be performed.  We found only two DMSMs that used fixed effects models: a 

DMSM for the income of the Dutch elderly ( Knoef, Alessie, & Kalwij, 2013) and the MINT model 

(Toder et al., 2002). In the first version of MINT, the fixed effects technique was used to predict 

earnings; however, they found that their predictions were not ideal, so in MINT3 the fixed effects 

technique was replaced by a hot-deck imputation approach (Toder et al., 2002:II-2-3). However, 

they did choose to use the fixed effects technique in MINT3 for pre-retirement earnings after age 

50.  

The random effects technique, ranking third overall, also performed reasonably well on all aspects, 

except perhaps on dynamism where it ranked second-to-last. The system GMM dynamic panel 

model came out fourth overall.  This technique ranked high on some data characteristics and low 

on others. It did not perform well in replicating means by time-variant predictors; this is likely due 

to weak instrumentation and violation of assumptions on the instruments. The system GMM 

model also ranked poorly for replicating the child-specific standard deviations. It performed well 

in terms of replicating the overall distribution, means across time, and the child-specific 

correlations. 

Dynamic panel GMM estimators are complicated; there are many choices that need to be made 

and given their complexity it is relatively easy for non-experts to violate assumptions and generate 

invalid estimates. We experimented with different options for the GMM model and did not find 

any specifications that resulted in sensible looking estimates (except for one-step estimation instead 

of two-step for the model used in the empirical assessment, which gave similar estimates, as 

reported in Table 6); however, it is possible that further perseverance with GMM model 

specifications could result in simulated data that performs better than that reported here.  

As far as we are aware, no DMSM has used a GMM dynamic panel model technique. Emmerson, 

Reed, and Shephard (2004), in their review of PenSim2, suggested that, to account for the 
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endogeneity of the LDV, the dynamic panel model GMM estimator be used as an alternative to 

their random effects approach in modelling earnings (p. 33). This would be a good approach to 

investigate, although our work suggests that a dynamic panel GMM estimator will not necessarily 

perform better. 

Although the hybrid technique had some theoretical advantages over the random effects model, it 

ranked fifth overall. Even so, the simulated means and distributions were not wildly different from 

those from the other models. The significance testing, however, found that the hybrid model 

performed significantly worse that the OLS-LDV model for overall distributions, means over time, 

dynamism, and mean reading scores by gender and father’s education. We did not find any cases 

of DMSMs using a hybrid model, most likely due to the hybrid technique being less commonly 

known. 

The random effects model with AR(1) within-child errors ranked last. Given that this model 

performed worse than the standard random effects model (with a variance components error 

structure), this indicates the AR(1) structure was not a good fit to our data.  Further within-child 

error structures could be investigated and some improvement on the standard RE model could be 

gained. For use in a DMSM however, one would also have to consider how other within-child error 

structures could be implemented in the simulation of data. 

If creating a DMSM, the use of the random effects, hybrid, or fixed effects models lead to further 

decisions that must be made regarding the individual effects. There are multiple options for 

assigning individual effects at the start of the simulation which need to be considered (although 

Richiardi’s Rank Method ((Richiardi, 2014) and (Richiardi & Poggi, 2014)) is a compelling choice 

given the lack of bias and ease of implementation) and there is also the question of how to treat 

the individual effects during the running of scenarios: are they left as per the status quo base 

simulation or are there scenario options that can change the distribution of individual effects for 

the population or a subgroup of the population? 

It was interesting that the rank order of the PRESS statistic did not follow a pattern similar to the 

ranks for the other data characteristics assessed. For microsimulation it is important that we 

generate data that is similar in multiple ways to the real world; in addition to generating the overall 

distribution of a variable, we also want to maintain associations between variables and longitudinal 

relationships over time (dynamism). The PRESS statistic measures the closeness of the fitted values 

to the observed values but does not measure these other characteristics and so, although the most 

well-known of our assessment measures, it was not the most important one in our opinion.   
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Significance testing was performed for each data characteristic at specific values (e.g. specific levels 

of predictor variables or specific percentiles), giving a large number of tests. It was difficult to 

summarise the patterns observed; just over half of the tests gave evidence of a difference between 

models. The most commonly observed pattern was that the best performing model (the OLS-LDV 

model except for means by mother’s working hours) was usually significantly better than the 

models ranked last or close to last. This indicated to us that choosing any of the highly ranked 

models would be reasonable based on the significance tests.  

The choice of model for parameter estimation may depend on what aspects of the data are 

important to reproduce.  If our microsimulation were not dynamic, the random effects model may 

be more seriously considered as simulating dynamism (e.g. by including an LDV in the model) 

would not be an issue. The decisions on which model to choose can be made based on multiple 

criteria. For microsimulation these could be the performance of potential models in an empirical 

assessment as undertaken here, any reservations over violated model assumptions, the ease of 

implementation in the simulation, and any further issues relating to scenario testing. For our 

dynamic MSM, the OLS-LDV technique appeared to be a defensible choice. Indeed we found this 

to be the most commonly used regression method for simulating a continuous state-dependent 

variable (see Table 1).  

For applications other than microsimulation, the criteria for making decisions could be different. 

For example, if one was interested in the effect of one key time-variant predictor on an outcome 

and only wanted to control for other variables (i.e., was not interested in the effect of them on the 

outcome) then fixed effects or difference GMM may be best. However, the principles discussed 

here on considering model assumptions and experimenting with different model specifications 

would still hold. 

We performed no variable selection in our empirical performance assessment but fit each model 

with the same set of pre-determined variables. This eliminated variation and potential bias from 

the variable selection process. In practice, however, variable selection may be performed, so it 

would be interesting to repeat this empirical assessment performing variable selection for each 

method. 

We assessed six models in our empirical work, but of course there are many other statistical 

modelling techniques that could be included in an assessment like this. In addition to other 

regression-style techniques for parameter estimation, there are methods that require more 

specialised programming that estimate parameters by minimising an objective or distance function.  
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Simulated minimum distance is one such approach that has been suggested for agent-based models 

(Grazzini & Richiardi, 2015) and could be considered for microsimulation also.   

The discussion of the six chosen modelling techniques is also useful to analysts choosing statistical 

techniques for other purposes (e.g. fitting a model to test associations). We explained how one 

would execute these techniques in statistical software and the table of assumptions lays out essential 

knowledge in choosing an appropriate modelling technique: it shows, at a glance, what assumptions 

a model makes and a test to evaluate the likelihood of the assumption being met. 

6. CONCLUSION 

Modellers have options when it comes to choosing modelling techniques; they should make their 

choice carefully, considering the assumptions of the techniques, the importance of simulating 

different aspects of the data, the implementation of estimated parameters in the MSM, and the 

ultimate application and aims of the MSM. Our assessment here aims to encourage modellers to 

experiment with different models in the process of making this choice.  We demonstrated various 

criteria that can be used to assess the performance of parameter estimates from a model in 

reproducing observed data. For our specific data we found that data simulated from parameters 

from an OLS regression model with an LDV most closely represented the observed data. The fixed 

effects model performed second best followed by the standard random effects technique, and then 

the system GMM dynamic panel model and the hybrid model. The random effects AR(1) model 

ranked last. For the most part, however, all of the models generated synthetic data that replicated 

the observed data to a reasonable degree, with certain models performing better or worse on 

particular data characteristics. Although the simplest technique of an OLS regression including an 

LDV was found to perform well in our case, this result cannot be considered generalizable. Given 

the potential bias in the estimates from this model due to the violation of assumptions, it will be 

important for other modellers to perform their own sensitivity analysis to gain insight into the 

confidence they can have in using this technique (or any others where assumptions are broken) for 

their MSM or research application. We hope the comparative assessment performed here will result 

in more modellers comparing the effects of different modelling choices, which will ultimately help 

to improve the quality of, and strengthen the confidence in, microsimulation models and other 

research based on statistical models. 
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