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ABSTRACT: Multi-agent microsimulation, as a third way of doing science other than induction and
deduction methods, is explored to aid subway carriage design in this paper. Realizing that passenger
behavior shapes the environment and in turn is shaped by the environment itself, we intend to model
this interaction and examine the effectiveness and usability of the proposed model. We address our
micro-model from essential aspects of environment space, agent attributes, agent behaviors, simula-
tion process, and global objective/convergence function. Based on the real and simulated data, we
evaluate our model with a combination of quantitative and qualitative procedures. For quantitative
approach, we proposed two evaluation paradigms (i.e. “unified multinomial classifier” and “one-vs.-all
binary classifiers”) using the state-of-the-art machine learning techniques and frameworks; and we man-
age to show from various perspectives that our model matches the reality in the majority of cases. For
qualitative verification, we present a small-scale case study to evaluate different seat layouts in a subway
carriage, and identify their advantages and disadvantages with little effort. By enriching microsimula-
tion theory with innovative techniques, our research aims at promoting its acceptance level in design

communities by means of avoiding costly creation of real-world experiments.

KEYWORDS: Microsimulation, multi-agent, machine learning, neural network, design, subway car-

riage, pedestrian flow, qualitative study, quantitative evaluation.
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1 INTRODUCTION

The traditional subway carriage design activities can be classified into two categories: induction and
deduction approaches. Induction approach includes activities such as requirement analysis and evalu-
ation approaches based on comprehensive user studies, while deduction approach often refers to the
design activities that are directed by design principles and designers’ experience. Although both ap-
proaches have been applied widely in the domain of subway carriage design, designers are aware of their
limitations. Induction approach is weakened by the fact that data from time-consuming user studies are
incomplete and biased in most cases. At the mention of the weakness of deduction approach, designers
commonly admit that it is difficult to adapt principles and experiences from one specific design field
to another, because most design principles only hold within specific social and cultural constrains. Be-
longing to neither induction nor deduction methodologies, multi-agent microsimulation as an exciting
new approach to model the crowd behavior offers us a unique perspective for understanding passenger

flow patterns in subway carriages.

As a mandatory effort before applying any micro-model in design activities, the micro-model needs to
be evaluated with either qualitative or quantitative approaches. The qualitative study is concerned with
complete and detailed descriptions of observations, whereas quantitative evaluation creates statistical
models to explain observations; both approaches have several advantages and disadvantages, depending
upon the aim and focus of researchers (Goertz & Mahoney, 2012). There is a strong tendency to lo-
cate qualitative and quantitative methods in two different methodological paradigms. However, a few
frontier researchers have attempted to develop a basis in both technical methods and methodologies for
integrating the two approaches. The parallel use of qualitative and quantitative procedures may: con-
verge (tend to agree), constitute a complementary relationship (reciprocally supplement each other),
and diverge (contradict each other), (Jenner, Flick, von Kardoff, & Steinke, 2004) which we believe

might give an appropriate integral picture for the simulation quality of micro-models.

After briefly reviewing the relevant research areas in section 1.1 and clarifying our research problems
and goals in section 1.2, we will exhaustively present in section 2 our multi-agent micro-model from
five perspectives: environment space (section 2.1), agent attributes (section 2.2), agent behaviors (sec-
tion 2.3), simulation process, and global objective function (section 2.4). As the foundation of model
evaluation, we introduce the simulated (via model execution) and real (via in-field observation) data
collection in section 3.1 and 3.2 respectively. Concerning machine learning based quantitative evalua-

tion, we consecutively elaborate on topics of supervised training (section 3.3.1), multinomial classifier
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prediction (section 3.3.2), and one-vs.-all binary classifiers (section 3.3.3). Finally in section 3.4, we ex-
emplify a qualitative case study on evaluating different interior seat arrangements in a subway carriage;

and conclusions are drawn in section 4.

1.1 Description of Related Research Areas

Subway carriage design can be regarded as a kind of user centered design which “focuses on the needs,
wants, and limitations of the end user of the designed artifact” (Abras, Maloney-Krichmar, & Preece,
2004), one example of which is figuring out better ways to place artifacts like seats within a certain
carriage space from the perspective of passengers. Design is often viewed as a more rigorous form of
art, or art with a clearly defined purpose, which is a general philosophy that usually does not involve
any guide for specific methods. (Abras et al., 2004) As a branch of design, subway carriage design has

no specific guidelines or methods to follow either, which is a typical dilemma faced by designers.

A few forerunners have been trying to eliminate the weakness in induction and deduction approaches
by focusing on the interaction between passengers and artifacts in subway carriages. When passen-
gers interact with artifacts in various environmental settings, their behaviors shape the environment
and are in turn shaped by the environment itself. (Axelrod, 1997) There have been many theories,
methodologies, and tools for modeling the mutual interactions between humans and their surround-
ings. Microsimulation is one of those theories and methods, which can be used to examine the inter-
action with relatively less effort by avoiding costly user study activities. Multi-Agent System (MAS)
is constantly used as a microsimulation tool to model the complex crowd behavior in a particular so-
cial setting (Boman & Holm, 2005). By endowing different agents with heterogeneous properties and

homogeneous behaviors, the simulation can be treated as a form of reflection of reality.

Simulation means “driving a model of a system with suitable inputs and observing the corresponding
output” (Bratley, Fox, & Schrage, 2011). Microsimulation is a kind of simulation, which builds the
model from micro perspectives; hence it is called micro-model. The analysis based on micro-model
is microscopic analysis, which is performed at extremely detailed levels. Typically, microscopic analy-
sis is applied to simulate downtown cores, roadway corridors, or sub-areas of a region (Beebout, 1999).
Microsimulation is a rapidly growing interdisciplinary research area combining social science and com-

puter science; but as most young fields, its promise seems greater than the proven accomplishments.

Asa“tool for understanding observed systems” (Edmonds, 2001), Multi-Agent Based Simulation (MABS)

is defined as “simulated entities modeled and implemented in terms of agents” (Davidsson, 2001), which
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is mostly used for microsimulation applications, as opposed to macro or aggregate models (Ronald,
2007). Multi-agent micro-simulation (a.k.a. Cellular Automata - CA) has been used for investigat-
ing micro-level behaviors, such as crowd patterns and single link flows, by defining simple rule-based
agents that perform actions based on the world immediately around them. However, authors of (Blue
& Adler, 1999) claim that there is no universal guideline to verify if the models mirror real-life behavior
or not. Additionally, Narimatsu, Shiraishi, and Morishita (2004) argue that “the most difficult concept

in CA involving movement is avoiding conflicts or collision between pedestrians”.

Being conscious about the possible role of microsimulation that can be played in design works, we care-
fully build a pedestrian micro-model by iterating several prototypes (Kerridge, Hine, & Wigan, 2001).
Attempting to supplement qualitative evaluation, we invent 2 quantitative evaluation approaches us-
ing the state-of-the-art machine learning techniques and frameworks. Our ultimate purpose is to aid
subway carriage design. In contrast to the traditional induction and deduction approaches, microsim-

ulation, as a third way of doing science, may be a cost-efficient approach to assist designing activities.
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Figure 1: The essential components and concepts of a typical multi-agent microsimulation model.

1.2 Research Problem and Goal

The first research problem is how to build a pedestrian micro-model that can simulate passengers’ crowd
behaviors reasonably within an enclosed subway carriage. As displayed in Figure 1, a properly modeled
multi-agent micro-model constitutes proper definition of environmental space, agent attributes, behav-
ioral input foutput, and global objective function. A single agent is an automaton, the state of which is
decided by the values of its attributes (Helbing, Keltsch, & Molnar, 1997; Helbing & Huberman, 1998;
Helbing, Molnar, Farkas, & Bolay, 2001; Helbing, Armbruster, Mikhailov, & Lefeber, 2006); those
attributes may be affected by input from various sources (i.e. environment, other agents, and even
themselves), and in turn influence their behavioral output. As such, agents can be shaped by the per-

ceivable environmental stimulus/inputs and be capable of shaping the environment by their behavioral

Ca0, L1, KANG, L1U,  The Quantitative and Qualitative Evaluation of a Multi-Agent Microsimulation Model for Subway
SUN, KOTAGIRI Carriage Design

10



INTERNATIONAL JOURNAL OF MICROSIMULATION(2015) 8(3) 6-40

outputs. Therefore, our first goal is to define several essential building blocks of our micro-model: en-
vironment space, agent attributes, agent behaviors, simulation process, and objective function (Axtell,

2000).

Straight after constructing the model, the second question is how to effectively evaluate if the model
is capable of reflecting what happened and predicting what will happen in real situations (Batty, 1997,
2001). This question is often settled by analyzing the differences between the simulated and real pas-
senger flows in either qualitative or quantitative manners (Holm & Mikili, 2013); but to the best of
our knowledge, qualitative approaches have been dominating this field up till this date. To avoid man-
ually defining criterion that might weaken the strength of quantitative evaluation methodologies, we
set our second goal as learning a nonlinear complex function/mapping that can precisely measure the
degree of similarity between simulated and real cases. Recent advances of Neural Networks (NNs) have
propelled the multidisciplinary machine learning research in many fields such as (Cao, Huang, & Sun,
2014a; C. Liu & Sun, 2015; W. Huang, Zhao, Sun, Liu, & Chang, 2015); thereupon, we propose two
novel ways of fitting NN(s) to the simulation data, and investigate their performance of predicting the

real data from different perspectives using a variety of measures.

With the belief that qualitative study often provides complementary information to quantitative anal-
ysis, we establish the third research question as how to qualitatively use our micro-model to aid subway
carriage design activities. After we have created and validated a micro-model, there are many possible
ways to utilize the model. As far as we know, the qualitative observation of micro-model executions is
commonly accepted for guiding the design routines. Since it is impossible to convey an all-embracing
qualitative study of model application in this paper, we aim at carrying out a small-scale qualitative
case study instead, as our third research objective. By doing this, we exemplify how a micro-model
may be used for a specific case of carriage design, and further enlighten the potential of multi-agent

microsimulation models for other designing activities.

2 THE PROPOSED MICROSIMULATION MODEL

We adopt the method of agent-based microsimulation to establish our model, in which each individual
is represented as an independent agent. Instead of creating intelligent agents that are capable of finding
the best path among other agents, we endow each agent with limited ability of perception. The sim-

plicity of agents is ensured by a set of simple attributes and behaviors defined for each agent. In other
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words, a single agent interacts with other agents and its surrounding circumstances within the restric-
tions of those pre-defined attributes and behaviors. The principle of our simulation is to minimize the

gap between the aggregated outcome of agents in the virtual world and that in real situations.

We used two approaches to parameterize the attributes and behaviors: one involves using survey data
and field research; and the other involves making an initial best guess and later calibrating these values
by comparing the output of the model with the real world system. (Twomey & Cadman, 2002) Our
model is evolved through several iterations, in each of which we evaluated with the same machine
learning strategy (cf. section 3). The elements in the model are the environment space, agent attributes,
agent behaviors, simulation process, and objective function (Ronald, 2007). Throughout the paper, we

use bold uppercase characters to denote matrices or sets, bold lowercase symbols to denote vectors.

2.1 Environment Space

Generally, the location to be modeled is known at the start of the simulation. Subway carriage is a
kind of small-scale enclosed space that consists of small areas connected by corridors, entries, and exits
(Ronald, 2007). Figure 2(a) shows the exterior and interior of a standard Bombardier C20 carriage

(Wennberg, 2013) used by Stockholm Metro - SL (Stockholm Lokaltrafic).

. Seat

(b) The standard 2D interior layout (top view) of the selected part in a C20 subway carriage

I Backrest @ Window ==ms Door fSeparation Wall i Glass Wall

(2) C20 in/ex-terior

Figure 2: The interior layout and exterior appearance of the SL Bombardier C20 subway carriage.

A typical C20 subway carriage used in Stockholm Metro is 46.5 meters in length and 2.8 meters in
width. To control the model complexity, we select 1/3 of the carriage and scale down (with a mapping
of 1 pixel ~ 1.93 x 1072 meter) to 800 pixels long and 145 pixels wide, as shown in Figure 4. In this

paper, we use a set E to denote all key properties that constitute the enclosed space of a C20 carriage.

According to the standard seat distribution for C20 subway carriage used by Stockholm Metro as illus-
trated in Figure 2(b), there are 39 seats in that 1/3 part of an integrated carriage. Four doors situated on

both sides divide the seats in a C20 carriage into 3 sections from left to right in general. In our model,
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all seats are supposed to be occupied by fixed passengers who do not stand up or move during the whole
simulation process. Hence, some passenger behaviors, such as looking for seats and taking turns to sit,
are excluded temporarily from our current study. By doing this, the variables in our simulations and

experiments are simplified and become easier to control and analyze, because our research goal is to

verify the validity of the proposed model instead of simulating the intact real world.

Figure 3: The manual zone partition (No. 1~ 19) of the focused part of an SL C20 carriage.

Under the consideration of applying both qualitative and quantitative methodology to the upcoming
evaluations, the focused part of C20 carriage is partitioned to 19 zones belonging to 4 categories (

corridor, seat, central, and doorway zone) as is shown in Figure 3.

e Corridor zone: this category includes 3 areas (No. 1 ~ 3). Passengers constantly pass them to

look for comfortable positions, but few passengers like to stay still in these areas normally.

e Seat zone: it includes 10 areas (No. 4 ~ 13). They are located between seats that are facing each
other. They are usually considered too narrow to hold any passengers unless there are way too

many passengers in the carriage.

e Central zone: two areas (i.e. No. 14 ~ 15) belong to this category. When passengers are looking
for comfortable positions, central area is probably the most crowded region, for people must

walk across central areas to reach other types of areas.

e Doorway zone: it contains 4 areas (No. 16 ~ 19). They represent areas around the 4 doors in
the focused carriage region. Doorway areas, together with central zones, tend to be the most

preferable areas for passengers to stand in according to our observations.

2.2 Agent Attributes
AnagentA, (,_; x)representinga passenger moves continuously via constant interactions with the
environmental space and other agents; hence its status (a.k.a. attributes) may change along the time-

line, making A, at time-point ¢ potentially different (from the perspective of embodied attributes)
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from that at the next time-point #+1. Due to the limitation of computerized simulation, we have to
treat the concept of time in a discrete manner, but in reality, time is a continuous concept. We denote

the n-th agent at time ¢ as A, which contains five attributes assembled in a seven-tuple array:

Aglt):<< £l)ayn ) pn’ %(z )9 Ezt)’ Vs Zgzt)’ mgzt)>7 71:1,2,N t:O,ly--ﬂm, (1)

t?

(t) (1)

where N, is the total number of agents in the predefined space; (x,,’, 7, ’) records the location (in form
of a coordinate pair) of agent A, at time ¢, as demonstrated in Figure 6(a); p, is a constant variable
denoting the diameter of an agent represented in a solid circle (Figure 4); q,(l ) is the comfort distance

of agent A at time ¢, representing the minimum distance which agents would like to keep between

(t)

each other; uif) denotes the current moving direction (a.k.a. facing angle) of agent A,,’; and v,, is the

(¢)

speed/velocity in which the agent A, is moving at time ¢; we use z,,

() -

locates at time ¢; and finally, the mobility variable 7, is an integer indicating the maximum number

to denote the zone where agent A,

of zone-transit actions allowed for agent A, at time ¢. We will specify these attributes one after another

in the following sections.

= 800 pixels =

Y T O
® . @0
@Om @ (@ (@ (@ @ @ @ (@ @

Figure 4: The measurements of the simulated environment space E and the agent attributes p,¢.

2.2.1 Agent Diameter: p,,

We have observed that the average hominine shoulder length is 80 centimeters, which is much longer
than its width. For the sake of simplicity, we empirically stipulate that a passenger occupies a 70-
centimeter-diameter rotundity if observed from a top-plan view. We then scale it down by the same
ratio used in processing spatial data (cf. section 2.1), resulting in a 36-pixel-diameter rotundity (i.e.

P, = 36 as shown in Figure 4).

2.2.2  Dynamic Comfort Distance: qff)

Some researchers (Holmes & Spence, 2004; Graziano & Cooke, 2006; Coello, Bourgeois, & Iachini,
2012) conceive “comfort distance” as a protective buffer surrounding the body and prompting defensive
actions, which is represented by highly integrated multisensory and motor processes in frontal-parietal

and posteromedial areas (Ruggiero, Frassinetti, Iavarone, & Iachini, 2014; Tachini, Coello, Frassinetti,
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Figure 5: An calculation example of dynamic comfort distance g, ’: auto-adaptation according to N,.

& Ruggiero, 2014). In real world, we observe that passengers tend to adapt this distance according to
the number of passengers in the carriage. Thus, we apply the mechanism of automatic comfort distance
adaptation (a.k.a. dynamic comfort distance): the comfort distance changes depending on the current
number of agents in the simulated carriage; more agents lead to smaller comfort distance. We denote
the length and width of the space as .\, and E 4, respectively; provided that N, agents exist at time

t, the current comfort distance of each agent (i.e qﬁf)) is calculated by

Ejengeth X Eideh  p,,

(t) _
=2x
n N, xm 2

,n=1,...,N,. )

An example of applying this dynamic variations mentioned above to our model is given in Figure 5.
We believe this mechanism makes our microsimulation model step closer to reflecting the dynamic

characteristic of pedestrian movement in a subway carriage to a certain extent.
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Figure 6: Illustration of agent turning angle that is selected obeying a discrete Gaussian distribution.

2.2.3 Agent Moving Direction: uﬁf)

This attribute identifies an agent’s current facing angle which may be any value from a finite-discrete set
{0°,1°,...,358°,359°}, as illustrated in Figure 6. Since agents can only move ahead along their facing
directions, the terms “ moving direction”, “ facing angle”, and “ orientation” essentially refer to the
same attribute #\"). If we informally compare the simulation procedure to a movie clip constituted by
many consecutive frames, then each agent A, on the ¢-th frame (with a facing angle Mif) ) will have to be
assigned with a new moving direction (noted as u{"™) for frame ¢ + 1. Constrained by the processing
capability of the computer which runs our micro-model, we fix the update frequency Eg,, (of agents’
moving direction and position) to approximately 33.3 Hz (i.e. & 30 milliseconds). Based on the fact
that it becomes harder for a passenger to perform a larger-angle turn in an extremely short time-frame

(30 ms), we simply select the relative turning angles (noted as Auffﬂ)) for all agents obeying a Gaussian

distribution [cf. visualization in Figure 6(b)]:

+1 2
! (A%Sf )—,u> t=0,1 00
X | =Y l..., )
ov2r P

2072 3)
st. Aul™ e {—180°,—179°,...,0°,...,179°,180°}, u=0, & =25,

¢ (A |y, o) =

where ¢ <Au£f+l)| s 0> denotes the probability that turning degree Auﬁfﬂ) is selected and added to

the z-th time-frame; parameter u = 0° is the mean (or expectation) of the distribution; notation ¢ =
2° defines the scale (or span) of the distribution. The final value of ¢ is decided through a series of
validations (similar to the evaluation approach introduced in section 3.3.2) towards different candidate

values. With the precedent definition of relative turning angle in Eq. (3), we are able to compute the
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new agent moving direction with

t
# = mod [<u£°’+ZAu£f“>+360>,360], t=0,1,...,00
1=0

)

n

= mod [(u +Au ™ +360),360], uy Ve {0°,1°,...,358°,359°},
where mod(a, &) denotes the remainder of the Euclidean division of 4 by 4.

2.2.4  Agent Moving Velocity: v,

Asisanalyzed in (M. Q. Liu, Anderson, Schwartz, & Delp, 2008), biological human diversity is ubiqui-
tous in real world; their preferred moving velocity is treated as an important aspect of diversity in our
model. Although walking speed can vary greatly depending on a multitude of factors such as height,
weight, age, fitness, and group size, specific studies (Samra & Specker, 2007; Rastogi, Thaniarasu, &
Chandra, 2010) have found the average human walking speed is about 5.0 kilometers per hour (km/h);
the pedestrian walking speeds range from 4.51 to 4.75 km/h for older individuals and from 5.32 to 5.43
km/h for younger individuals; a brisk walking speed can be around 6.5 km/h; and race-walkers can
average more than 14 km/h. When evaluating our model with unsupervised machine learning tech-
niques in section 3.3, we normalize the time-consumption of model-execution and in-field observation
respectively; therefore, the relative distribution of agent speed-levels turns out to be more important

than the individual absolute speed-values.

3 L 45 276 207 138 69 Age Group 69 138 207 276 345 0.47
@ @ 3 Male PoPUlation (in thousands) :g I Female Probability
o 3 < '|l!1tl:r|;l]]‘dlﬂll
2 3 rend
i d o 0.3
e T 0.24
o S
1) 3.4km/h o
2) 4.5km/h O 7 01 UIs 0/14
3) 5.7km/h (“5 :
e veloeity (km/h)
) 6.8km/h Q @6: 034545 57 5

() Screen-shot: 4 speeds in simulation (b) Swedish population pyramid (CIA, 2014) (c) Probability

Figure 7: The heterogeneous agent moving speeds are mapped to groups of Swedish population.

According to the age-structure statistics of year 2014 from (CIA, 2014), Swedish population can be
largely seen as a continuation of 5 age groups, the proportions of which [cf. Figure 7(b)] are 0~14 yr:
17.12%, 15~24 yr: 11.97%, 25~54 yr: 39.30%, 55~64 yr: 11.63%, and 64 yr+: 19.99%. During our
in-field observations, we rarely see passengers aged 0~14 yr who travel alone, hence we only consider
4 age-groups whose ratios are rescaled within [0, 1] according to the aforementioned proportions re-
spectively: 55~64 yr: 0.24, 55~64 yr: 0.15, 25~54 yr: 0.47, 15~24 yr: 0.14. For simplicity, we directly

map the agents to those age-groups using 4 speed levels as illustrated in Figure 7(a): 1) agents with a
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white arrow have the slowest moving speed of 3.4 km/h (1.5 pixels/30ms); 2) agents labeled with a
pink arrow move at a speed of 4.5 km/h (x2.0 pixels/30ms); 3) agents with an orange arrow have a
speed of 5.7 km/h (x2.5 pixels/30ms); 4) the red-arrowed agents have a fastest speed of 6.8 km/h (3.0
pixels/30ms). These speed levels basically coincide with our in-field body-storming (Oulasvirta, Kurvi-
nen, & Kankainen, 2003) activities, which probably simulate 4 different kinds of pedestrian walking
speed resulting from 2 basic dimensions: age (young «<— old) and gender (male or female). The initial-
ization of agents follows a discrete probability distribution [Figure 7(c)], and the interpolated version

of which coincide with a certain binomial distribution.

2.2.5  Agent Mobility Index: m§f>

The initial values of agent mobility indices for all agents (i.e. milo)) are empirically defined as

3, v,=3.4km/h

0) 4, v, =4.5km/h
m, = N n:1,2,...,No, (5)

5, v,=5.7km/h

6, v, =6.8km/h

which will be decreased upon zone-transit (section 2.3.4) and increased upon active/passive comfort-
distance violation (section 2.3.5). When this variable reaches zero, the corresponding agent stops mov-

ing any more until its mobility index becomes positive again due to the violation of comfort distance.

(t)

n

2.2.6 Agent Zone-Location: z
(t)

With respect to the zone partition in Figure 3, 7, is assigned with the numerical label of the zone

where the n-th agent stays at time ¢. Therefore e {1,2,...,18,19}.

2.3 Agent Behaviors

The diverse behaviors of agents are consequences of their interaction with each other and the environ-
ment in which they are situated (Bonabeau, 2002). Based on the belief that agent’s behavior depends
on the role it currently plays, many common agent-based modeling approaches model agent behavior
with a finite state machine, which perpetually loops through a list of roles (Ronald, 2007). However, the
success of this approach requires macro-level understanding of the target “ecosystem”, while creating
computational models of pedestrian behavior is usually difficult (Benenson & Torrens, 2004). Walking
behavior is largely unconscious and unpredictable; sometimes it is hard to figure out why we take a
particular path, which is one example of the so-called “emergent behavior”. As an essential property of
any complex system, emergent behaviors are defined as “large-scale effects of locally interacting agents
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that are often surprising and hard to predict even in the case of simple interaction” (Boccara, 2010),
which is uninterpretable by macro simulations. With this circumstance, authors of (Bar-Yam, 1997;
Benenson & Torrens, 2004) supported microsimulation by claiming that 1) “the actions of the parts
do not simply sum to the activity of the whole” and 2) “the behavior of the system cannot be sim-
ply inferred from the behavior of its components”. As such, we merely define several local-and-simple

agent-level behaviors, as an integral part of our micro-model.

2.3.1 Moving Forward

For any agent A, whose mobility index 2, is larger than zero at time ¢ (i.e. mgf) > 0), it keeps moving

) at its pre-defined velocity v, (cf. section 2.2.4). We examined qualitatively

along its facing angle M,(f
that agents with faster speed are willing to go through passages like zone No. 2. But agents with slower
speed are apt to stay at their current locations and rarely go through passages; even if they are shoved

in a passage, they would stop there and cause a so-called “traffic jam”.

2.3.2  Regular Steering
Agent moving direction rotates a certain angle either clockwise or anti-clockwise stochastically every
Efeq = 30 milliseconds. The relative turning angle and absolute moving direction are calculated with

Eq. (3) and (4) respectively.

2.3.3  Wall Avoidance

Agents are restricted to move in the subway carriage represented as a rectangle area; they should be
capable of detecting the existence of a “wall” nearby and turn away from it. Concretely speaking, if
an agent A, collide into any part of the wall at time ¢, its facing angle will be immediately reset to the

orthogonal direction against that wall, i.e. uff) € {0°,90°,180°,270°}.

2.3.4  Mobility Decay
The behavior of mobility decay means that the mobility index will be decreased by one, as soon as its

owner agent goes across the border of any zone (i.e. the dashed lines in Figure 3); it is formulated as

(®) ()

(r+1)
mﬂ b Zn

n

e

=z
(¢+1) _
m,, =

Vn=1,...,N,. (6)

Because the agent stops moving upon m) < 1, the main purpose of designing this behavior is to

stabilize the simulation by making the model converge gradually. The global objective function that

specifies the end point of micro-model execution is formally defined in section 2.4.
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2.3.5  Comfort Distance Violation

When an agent moves into another agent’s comfort distance circle, they will stop moving forward
and change moving directions instead (cf. section 2.2.3) to maintain the comfort distance between
each other. Namely, there should be no other agents within the comfort distance of a certain agent.
Referring to Figure 6(a), between any 2 agents A, and A, the result of the following proposition must

be maintained at all times:

\/(xn—xn/)2+(yn—yn,)2 quf)+pn, YVt e{0,1,...,00}, Vn,n" €{1,...,N,}, n£n’. )

. t t) - . . .
Whenever the above constrain between agent A; )and AEZ,) 1s violated, we will, at the next time frame ¢+
1, update the mobility indices for both agents with the formula below, so as to boost their “motivation
to walk” out of the comfort-distance collision.

t+1 [
D =

, Vie{n,n'}, n # n. 8)

mﬁ” , m

2.3.6 Unaddressed Agent Behaviors

We intend to briefly present a small topic, in this section, on agent behavioral mechanisms (e.g. cluster-
ing, giving way, seat searching, and quening) which are not yet considered as a part of our microsimula-
tion and are, rightfully so, no part of the scope of this research. The clustering (a.k.a. cobesion) behavior
makes agents tend to stick together in family/friend relations, which in practice can be implemented
by constraining the maximum distance allowed between any two agents within the same cluster. An-
other behavior of cooperation between agents is giving way, which stipulates conditions such as letting
others off first before getting on and making room for others to pass through corridor zones. When
simulating the seat searching behavior, agents may be attracted to take the seat that has more empty
seats around it. Unlike the “random walk” of agents in an enclosed moving carriage, getting on/off the
carriage turn out to be more of an organized guening behavior, which can be implemented in various
ways. It is notable that if these unaddressed agent behaviors are adopted, further assessment of design

schemes will be influenced accordingly.

2.4 Simulation Process and Global Objective Function
A valid micro-model execution must embody 3 parts/stages as shown in Figure 1: initialization, “free-
lancing”, and convergence. The initialization usually requests presetting interior artifacts (e.g. seats and

handrails), existing agents (i.e. agents that are placed at certain locations inside the carriage), and enter-
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ing agents (i.e. agents that are going to enter the carriage). Throughout this paper (cf. Figure 3 and
Table 1,2), notation “a:5” (e.g. 16:2) represents placing b (e.g. 2) agents in zone a € {1,...,19} (e.g. 16);
and “a’-b"” (e.g. 17-3) means b’ (e.g. 3) agents are queued outside of doorway zone 4’ € {16,...,19}

(e.g. 17), waiting to enter the carriage via that doorway at the beginning of “freelancing” phase.

We borrow the term “freelancing” to describe the autonomous and lengthy process that constitutes
diverse interplay among agents and their surroundings. It is crucial that this process should not be
intervened in any way until convergence is reached; hence both emergent behavior (Boccara, 2010) and
self-organisation (Helbing et al., 2001; Ronald, 2007) can occur unexpectedly. Different from emergent
behavior, self-organisation occurs when the system organises itself into a more-ordered state, with no

central control.

The model execution ends at the time point ¢, when agents keep relatively stable in the whole simulated
carriage area. This global steady state or convergence implies that there is a global objective function
which is of key importance to every single simulation; and with the same notation convention as in
previous sections 2.1, 2.2, and 2.3, this objective function (a.k.a convergence target) is formulated as

(1)

Z(z‘+1) (i

n —Z

Ak t—1
mtll'l : fE,A,t’(t) = Z Zi:t—t/+l
n=1

st.: t>t'—1, N,>1, 10° <t/ <10°

> (9)

where fg 4 ,/(t) is the overall spatio-temporal agent entropy at time point ¢, which measures the accu-
mulated dynamic uncertainty of all agents over an empirical time period of ¢’ (i.e. from t —¢'+ 1 to
t); it increases when the simulated space is closer to random/chaos, and decreases when it becomes less
randomized/chaotic. The model converges when there are no agents traversing across different areas
within ¢/, i.e. fga (t) = 0; and parameter ¢’ tunes our model’s tendency to converge: the larger it

grows, the more difficult to minimize Eq. (9).

3 MODEL EVALUATION AND VERIFICATION

In the previous chapter, our microsimulation prototype for modeling passengers in a subway carriage is
described from the aspects of environment space, agent attributes, agent behaviors, and the objective func-
tion. Following the development of the prototype model, it is necessary to assess and explore its prac-
tical usefulness. However, most previous researches looked at different qualitative methods (Axelrod,

1997; Kelton & Law, 2000; Tobias & Hofmann, 2004) for deciding whether a pedestrian model was
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appropriate; and so far, little quantitative research has been undertaken into evaluating micro-models
designed to “mimic” a specific activity. Inspired by the recent advancement in the hotspot research areas
of generic machine learning and feed-forward newral networks, we propose a novel quantitative-oriented
approach to verify the maturity and feasibility of our pedestrian micro-model; it is implemented by
training a complex nonlinear Single-hidden-Layer Feed-forward Network (SLFN) (Rumelhart, Hinton,
& Williams, 1986) with labeled simulation data, and then measuring the learned SLFN’s generalization
and discrimination performance on predicting the real data collected from in-field observations. In the
following sections, we will consecutively elaborate on real data collection, simulation data generation,

quantitative model evaluation, and a gqualitative case study.

Table 1: Real data collected from in-field observation. d;

: 1q9:static feature; d; 55_,3:dynamic feature.

d, |Initial Status (entering|existing passengers) Real-data Dimensions G.e. d; ;,d; 5,...,d; 13)
d1 17-01,19-03|16:1,17:2,18:1,19:1 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,2,1,08,0,1,0
d, [17-03,19-00|14:1,16:3,17:2,18:2,19:4 0,1,0,0,0,0,0,0,0,0,0,0,0,2,1,1,2,4,4,12,4,3,0
d, |16-01,18-03|9:1,14:3,15:3,16:4,17:3,18:2,19:2 1,1,1,0,0,0,0,0,1,0,0,0,0,3,3,2,4,3,3,18,1,1,0
d, 16-02,18-05|1:1,14:3,15:3,16:4,17:2,18:4,19:3 3,2,3,0,0,0,0,0,0,0,0,0,0,4,4,3,3,2,3,20,3,1,1
d, |16-:07,18-05|1:1,2:2,14:3,15:2,16:5,17:5,18:5,19:3 4.2,3,0,0,1,0,0,0,0,0,0,0,5,7,4,2,6,4,31,6,3,2
d, |17-09,19-081:2,2:4,14:2,15:2,16:7,17:3,18:4,19:4 3,3,2,0,0,1,1,0,0,0,1,0,0,6,7,6,5,4,6,28,3,1,1
d, |16-10,18-06|1:4,3:1,4:1,7:1,14:4,15:2,16:5,17:4,18:4,19:4 3,2,2,0,0,0,1,0,0,0,0,0,0,5,9,7,6,4,7,30,7,4,3
dy 17-08,19-10]1:2,2:2,3:2,4:1,8:1,14:2,15:2,16:5,17:2,18:6,19:5  |4,4,3,1,0,0,0,1,0,0,0,0,0,5,8,3,8,7,4,35,0,3,5
d9 17-11,19-13|1:2,2:2,3:1,6:1,8:1,14:3,15:3,16:4,17:3,18:2,19:3 2,4,2,0,1,0,0,0,1,1,0,0,0,6,8,6,5,5,8,40,3,3,4
d10 16-10,18-11|1:3,2:4,3:2,6:1,7:1,10:1,14:5,15:4,16:5,17:4,18:4,19:5|4,6,3,0,0,1,1,1,0,1,0,0,0,8,9,8,7,5,6,46,4,6,5

3.1 Real Data Collection: In-Field Observation

The purpose of in-field data collection is to gather 10 real datasets by observing 10 “valid” pedestrian
flow processes within a C20 carriage operated by Stockholm Lokaltrafic (SL). A valid pedestrian flow
process starts from the time when passengers, who intend to get off the carriage upon arrival at a
subway station, have all gone out of the carriage. Similar to the term “existing/entering agents” defined
in section 2.4, the initial passenger distribution in the carriage is recorded in the form of “a:5” (Table 1)
implying b passenger(s) in zone a; and passengers queuing outside the carriage doors are noted as “a-
b” (Table 1) implying that b passenger(s) will enter through doorway zone a. The newly entered
passengers orientate themselves and coordinate with original passengers in the carriage to look for
their own comfortable positions. And observation can be counted as a “valid” one only when 1) no
passengers sit down, and 2) no passengers walk to the other 2/3 C20 carriage. The pedestrian flow

process ends at the time when all passengers stay relatively stable in the carriage, meaning there are no
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passengers traversing across different areas within an empirical time period.

For the i-th valid observation (i.e. “real data” d; in Table 1), we use d; ; ;19 to denote the number
of passengers in the j-th zone after the end-point is reached (a.k.a. “static features” in Table 1), and
use d; ; (j=0,.,23) to represent the “dynamic features” that basically reflect important characteristics of
passengers’ movement; they denote the time needed to reach the end point (d; »,), number of passengers
that once went from zone 14 to 15 (d; ,;) or the other way around (d; ,,), and the number of passengers

who are still moving in the end (d; ,;). We construct a matrix D to denote the entire real datasets:

dl T d1,23

>

D:[dl""’dlo];I;XZ}: E ". E ) (10)
le,l e d10,23

where d; is a row vector denoting the i-th real-world data, i.e. d; =[d; ,,...,d; ,3]. We also represent

the observation categories/IDs with a matrix G:

811 810 1 O
T . ) . .
G:[gp---’glo]mxw: : i : = i . (11)

80,1 " 810,10
O 1 10x10

With these notation definitions, we can jointly represent the real data with IDs (i.e. labeled testing data

in section 3.3) in the form of R ={(d,, g;)|d; e R¥,g, € {0,1}!°,: =1,...,10}.

3.2 Simulation Data Generation: Micro-Model Execution

Based on the real data collected from in-field non-intrusive observation, our micro-model is executed in
order to gain 100 valid sets of simulation data, which will be “compared” with real data using machine
learning techniques. The micro-model execution exactly follows the 3-stage process (i.e. initialization,
“freelancing”, and convergence) specified in section 2.4. For each real data d;, we initialize our model
with the same “initial status (entering|existing passengers)” as in Table 1, and run (i.e. “freelancing”) it
until convergence for 10 times. The reason of multiple simulations per real case is the basic belief of
microsimulation theory: “what is valid should be the aggregated overall result from multiple micro-
model executions instead of the separate result from one single execution” (Axelrod, 1997). Ultimately,
we get 10x10=100 simulative data ai7(i:1,...,1oo), each of which also consists 23 feature dimensions (cZ g~

~

d; 5;) referring to the same static/dynamic characteristics as in real data. Table 2 presents portions of the
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Table 2: Partial simulation data samples generated from 100 valid micro-model executions.

d.

I3

Model Initialization (entering|existing agents)

Features of Simulation Data (d:,p . ..,a?l-’z})

—_

17-01,19-03|16:1,17:2,18:1,19:1

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,3,1,05,00,1,1

N

17-01,19-03|16:1,17:2,18:1,19:1

1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,3,10,00,0,4

[0

17-01,19-03|16:1,17:2,18:1,19:1

1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,3,1,1,1,13,00,2,3

iy

17-01,19-03|16:1,17:2,18:1,19:1

1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,18,04,4,4

w

17-01,19-03|16:1,17:2,18:1,19:1

1,0,2,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,10,02,3,5

17-01,19-03|16:1,17:2,18:1,19:1

1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,09,03,3,4

~N

17-01,19-03|16:1,17:2,18:1,19:1

1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,10,02,2,4

=

17-01,19-03|16:1,17:2,18:1,19:1

1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,3,08,01,1,3

S B Bu) Q) au) B Bu) e

O

17-01,19-03|16:1,17:2,18:1,19:1

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,1,05,00,1,2

—_
o

17-01,19-03|16:1,17:2,18:1,19:1

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,3,07,00,1,1

N
o

17-03,19-00|14:1,16:3,17:2,18:2,19:4

1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,3,4,2,2,23,05,5,0

©)
o

16-01,18-03|9:1,14:3,15:3,16:4,17:3,18:2,19:2

1,1,1,0,1,0,0,0,0,0,0,0,1,1,2,5,1,4,4,27,02,3,1

iy
o

16-02,18-05|1:1,14:3,15:3,16:4,17:2,18:4,19:3

3,2,2,0,0,1,0,0,0,0,0,1,0,4,4,2,3,2,3,43,05,1,1

16-07,18-05|1:1,2:2,14:3,15:2,16:5,17:5,18:5,19:3

3,3,2,0,0,1,0,0,1,0,1,0,1,5,5,4,3,6,3,46,07,2,2

x
o

17-09,19-08|1:2,2:4,14:2,15:2,16:7,17:3,18:4,19:4

4,2,3,0,1,2,0,0,0,1,0,0,0,6,5,7,5,6,3,47,05,2,1

~
o

16-10,18-06|1:4,3:1,4:1,7:1,14:4,15:2,16:5,17:4,18:4,19:4

3,1,2,1,0,1,0,1,0,1,0,0,0,4,7,8,6,5,6,52,10,3,4

3
o

17-08,19-10]1:2,2:2,3:2,4:1,8:1,14:2,15:2,16:5,17:2,18:6,19:5

3,5,3,0,2,0,1,0,0,1,0,0,1,5,6,4,6,6,5,56,01,3,5

£ B o) e e e e e e
o

O
o

17-11,19-13]1:2,2:2,3:1,6:1,8:1,14:3,15:3,16:4,17:3,18:2,19:3

2,5,3,0,0,1,1,0,1,0,0,1,1,7,5,6,5,5,6,63,04,2,4

oL

100

16-10,18-11|1:3,2:4,3:2,6:1,7:1,10:1,14:5,15:4,16:5,17:4,18:4,19:5

5,6,2,0,2,1,1,0,1,0,1,0,1,7,7,8,6,6,6,69,04,5,5

simulation dataset; it is mathematically denoted as R= {(ﬁl,gl)@ eR? g, €{0,1}'%:=1,...,100},

in which we have equivalent [as Eq. (10) and (11)] definitions of

dy
D= [al’--wawoﬂoms =
_"?100,1
§1,1
az[/g\p---’gmo]l)o“o: :
_§1oo,1

and

row001-

row011-

row081-
row091-

row100-

0 0 ... 0 0 0 (12)
1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

° 0 O % 1]i00x10

To empirically investigate the relationship between model-execution time (or “in-field observation

time” for real data) and existing/entering agents (or “existing/entering passengers” for real data), we

visualize the values of ‘Z,zo in Figure 8(b) and d; ,, in Figure 8(a) as a function of existing and enter-

ing agents/passengers. The model-execution time in Figure 8(b) for each parameter combination (i.e.

existing and entering agents) is averaged over 10 “valid” simulations with the same presetting of existing-
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Figure 8: The observation/simulation time (blue line) and the corresponding cubic interpolations
(3D surface) as a function of existing and entering passengers/agents. Data source: Table 1 and 2.

entering agents. The visualizations in Figure 8 show that both real and simulated pedestrian models
operate in linear time with respect to either existing or entering individuals; this is to be expected as
there are no complex interactions. Hence in both cases, the relationship between the add-up density
(existing + entering individuals) and run time becomes polynomial. However, the time-consumption
of simulation grows faster than that of real-world observation, which is probably caused by the fact
that passengers are more efficient (than agents) in resolving conflicts by possessing context-awareness

and global-sensitiveness; this discovery also coincides with the efficiency analysis in (Ronald, 2007).

3.3 Quantitative Model Evaluation: Machine Learning

The primary goal of this quantitative evaluation is to answer the question that whether our proposed
micro-model can precisely reflect and predict the real passenger flow in a subway carriage; and we tackle
this question by estimating the similarity level between real and simulation data. Intuitively, we could
calculate the mean within each simulation group, and compute a summation over all deviations (e.g.
absolute, squared error, etc.) per variable. Furthermore, we could also apply weights on different
variables (equivalent to a linear model), since they might not be equally important. We empirically
tested those evaluation methods and found out that 1) the simple averaging over 10 raw simulations
may lead to faulty conclusions as the mean statistics are not guaranteed results from our simulations and
might just represent a situation that will never take place in the simulated environment; 2) the unbiased

treatment on different variables seems awkward since they (e.g. execution time d, 5, and traversing
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agents (Z,zl, 6;’;22) clearly impose a different unit that will hamper the measurement via their varying
amplitude; 3) even if different coefficients are utilized to weigh all 23 variables, the manual selection
and optimization of weights [e.g. via grid search (Hinton, 2012; Cao et al., 2014a; Cao, Huang, & Sun,
2014b)] might just be yet another challenging and time-consuming work; 4) there is no guarantee that

linear weight combination works better than a nonlinear version.

To address the above problems commonly seen in quantitative model-evaluation approaches, we pro-
pose to use the state-of-the-art machine learning methods to evaluate the effectiveness of our micro-
model; in particular, SLFNs are our major focus. Extreme Learning Machine (ELM) (G.-B. Huang,
Zhou, Ding, & Zhang, 2012; G. Huang, Huang, Song, & You, 2015; G.-B. Huang, 2015), as a novel
learning algorithm originated from SLFNs at the very beginning, is well-known for its simple architec-
ture with proven potential in solving classification and regression problems; ELM also tends to reach
both the smallest training error and the smallest norm of output weights, requiring less human in-
tervention and supervision than other supervised learning algorithms (G.-B. Huang et al., 2012). As
a result, we train an ELM network from labeled simulation data (cf. section 3.3.1), use the trained
network to predict the classes/labels of real data (cf. section 3.3.2 and 3.3.3), and report the model’s
approximation ability from aspects of accuracy, standard deviation, precision, recall, confusion matrix,

and receiver operating characteristics (ROC) graph (Fawcett, 2006).

3.3.1 Supervised Training on Simulation Data

ELM can conveniently approximate complex nonlinear mappings directly from the input simulation
data. Asshown in Figure 9, it has 3 essential layers (input, output, and hidden layer) and 3 fundamental
parts (random projection, nonlinear transformation, and linear combiner) (Cao, Huang, & Sun, 2015).
In a nutshell, the hidden layer maps the input space (23 dimensions in our case) onto a new space (L
dimensions) by performing a fixed nonlinear transformation with no adjustable parameters, while the
output layer behaves like a linear combiner on the new space. We simply use the sigmoidal activation
due to its proved universal approximation and classification capability (G.-B. Huang et al., 2012), thus

the activation function of the i-th hidden node is

~ —1
Sig(ai,bl-,d]-):[1+e_<ai'dj+bi)] Lie{l,2,....L}, j€{1,2,...,100}, (13)
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Random Input Weights Tuned Output Weights
A (Full Connection) H (Full Connection)
(4 -

The i-th simulation data Input Layer Hidden Layer Output Layer
(Sigmoid)

Figure 9: The structure of a typical ELM network with one hidden layer (with L nodes), one input
layer (with 23 nodes), and one output layer (with 10 nodes representing 10 categories).

where the input weights W, € {a;,b;},_, ; are randomly generated obeying any continuous prob-

input

ability distribution (G.-B. Huang et al., 2012). The transformed feature space H is defined as

h, Sig(al’bl’al) Sig(aL,b,al)

ay
I
I

(14)

h1oo Sig(apbl’dwo) Sig(aL>bLsd1oo)

where S2g(a;, bl-,a]-) is called the activation function of the z-th hidden neuron; and row vector h; =
[Sig(ay, bl,a]- ). S1g(a;, b ,Hj)] is the output vector of the hidden layer with respect to the j-th
input vector; in other words, h; maps the raw feature to L dimensions. The row vectors of H are in full

connection (weighted by W, in Figure 9) with 10 output nodes representing 10 simulation classes.

output

Principally, W € REX19 = [w,,...,w;]" can be learned with any supervised learning algorithm;

output

and we follow (G.-B. Huang et al., 2012) to tune W

outpur Decause of its fast training speed and good

generalization ability:

H' (L +HH)"'G, L>100
output — )

(£+H'H)'H'G, L<100

\% (15)

where G is defined in Eq. (12); small positive values (é) are added to the diagonal of HH' to improve
the stability and generalization ability of the resulting solution; the user-specified parameter C is a
tradeoff between the distance of the separating margin and the training error (G.-B. Huang et al., 2012).
After all the nonlinearities in the hidden layer are fixed, the output layer behaves like a linear combiner.
When the number of training samples is larger than that of hidden nodes, the second solution should

be applied to reduce computational costs.

Ca0, L1, KANG, L1U,  The Quantitative and Qualitative Evaluation of a Multi-Agent Microsimulation Model for Subway
SUN, KOTAGIRI Carriage Design



INTERNATIONAL JOURNAL OF MICROSIMULATION(2015) 8(3) 6-40

123 456 7 8 910
0 1l O 0 0 0 0 0 0 0O 01
o5 2lofdo 0 0 0 0 0 0 O
207 3lo 0150 0 0 oo of
Zos 4t0 0o oo o 0 0 0 o
500 50 0 0 0 0 0 0
50 8l0 0 0 0 05 0f

S 0.3
., 710 0 0 o o o]
0.1 80 0 0 0 04

10000
90 0 0 O EE325 0
10[0 0 0 0 0 o &

0.2
Value of € 005 =20 %0 Value of L

(2) Performance sensitivity to parameters C and L (b) Confusion matrix (%): L=>5,000, C=0.01

Figure 10: The evaluation results obtained via an unified multinomial classifier: (a) the performance
sensitivity obtained via grid searching; (b) the class-wise confusion matrix of prediction accuracy.

3.3.2  Predicting Labels of Real Data: Unified Multinomial Classifier

It is often recommended in machine learning practice to normalize feature values per dimension; and in
our real and simulation data, all feature values except d; 5, and CZ 20 (time measures) reside in the region
0f [0,10], therefore we normalize them to [0,10] respectively to eliminate inordinate significances. Since
the unified ELM classifier (G.-B. Huang et al., 2012) naturally permits the use of more than two classes,

we use the following multinomial /multiclass decision function, when predicting the labels for real data

di, i€{1,2,...,10}*

label(d;)=arg max [Sig(a,b,dl-)-W (16)

0&{l,...,10} O”tpm] ’

where o denotes one of the label IDs. Inspired by (Ghanty, Paul, & Pal, 2009) and (Cao et al., 2014a),
we carried out a grid search (Hinton, 2012; Cao et al., 2014a) for optimal (C, L) parameter combina-
tions; we tested 15 values of C € {0.001,0.01,0.05,0.1,0.2,0.5, 1,2,5, 10, 20, 50, 100, 1000, 10000} and 12
different values of L € {10, 20,30, 50, 80, 100, 200, 500, 1000, 2000, 3000, 5000}, leading to a total of 180
trials/tests. According to the analysis in (Cao, Huang, Sun, et al., 2015; Cao, Huang, & Sun, 2015), the

Moore-Penrose pseudo-inverse (Rao & Mitra, 1971) to tune W, [Eq. (15)] can lead to numerical

output
instabilities if the training sample matrix is not full rank, which is unfortunately very often the case for
real-world data (Miche, Van Heeswijk, Bas, Simula, & Lendasse, 2011). Because the parameters for the

hidden nodes are randomly generated, the feature mapping matrix (i.e. H) does not stay the same given

identical training and testing data, making the prediction accuracy of a single trial different from other
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trials. Although this kind of performance variance becomes acceptable and controlled within certain
limits by adding é in Eq. (15), it is still necessary to carry out groups of trials and calculate the average

performance; for this reason, each score in Figure 10(a) were averaged over 20 trials.

From Figure 10(a), we can see that good classification performance can be achieved as long as L is rela-
tively large (without significant relevance to C), which helps us to evaluate our model easily and effec-
tively by avoiding tedious and time-consuming parameter tuning. The best average prediction accuracy
(84%) is obtained at L=5,000 and C=0.01, we thus drill down that case to per-category classification
behavior by presenting the corresponding confusion matrix in Figure 10(b); it is apparent that the 3rd

and 9th real data get the worst scores because they are mostly confused with the 8th class.

3.3.3  Predicting Labels of Real Data: One-vs.-All Binary Classifiers

Although the unified multinomial classifier indicates that our micro-model is capable of approximating
over 80% real-world pedestrian flow cases, it somehow failed to distinguish a few cases, which maybe a
consequence of the difficulty in training a universally functional network for all classes based on such
a limited set of training/testing samples. As a consequence, we naturally think of the one-vs.-rest (a.k.a
one-vs.-all) strategy (Hsu & Lin, 2002) that trains a single binary classifier per class, with the samples of
that class as positive samples and all other samples as negatives [cf. Eq. (18)]. This strategy requires the
k-th binary classifier to possess only one output node that produces one real-valued confidence score

[i.e. scoring function f®)(-)]:
L
FEd;) = Sig@®,b®),d)- Wi, = > wsig@", b,d)), k=1,2,...,10, (17)
j:l

where %) is the corresponding notation (as in section 3.3.1 and 3.3.2) for the k-th classifier; and wi.k) =

[‘w](.ﬁ)] is a single-element vector because there is only one node in the output layer (cf. Figure 9) of
a binary classifier. We further define the label/class matrix G® for the k-th classifier in a slightly

different way from Eq. (12):

G =[g®,. .., g"T = (1= 41,41+ L1, =1 (18)
10 labels of the k-th class

We once again use the manual grid search strategy to select the optimal parameter set (L,C) for each
network /classifier; and to cope with performance variance, we train and test each binary classifier for
200 times from scratch, expanding the number of testing samples to 2,000 in a way. Unfortunately,
the simulation and real data are rather imbalanced in that they contain only 10% positive samples, the

networks can be very sensitive to the class distribution and might be misleading in some way (He,
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Table 3: Parameters and measures of 10 one-vs.-rest binary classifiers (200 trials); the scores labeled
with bold, asterisk, and underline represent the best, 2nd best, and the worst results respectively.

Parameters || Class. | Class. | Class. | Class. | Class. | Class. | Class. | Class. | Class. | Class. Mean
& Measures || k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8 | k=9 | k=10

L, 10° | 102 | 500 | 10° [ 2000 | 200 | 200 | 10° | 50 | 500 |[N/A

C, baseling | 106 | 10° | 102 | 10° | 100 | 12 | 102 | 1 10 | 102 |[N/A
Mean Acc. || 0.879 | 0.916 | 0.897 | 0.996* | 0.991 | 0.906 | 0.992 | 0.998 | 0.872 | 0.996" || 0.944
Dev. 0.074 | 0.036 | 0.015* | 0.021 | 0.029 | 0.037 | 0.027 | 0.012 | 0.074 | 0.02 || 0.034
Precision 0.852 1 0.1 1 0.942 | 0.643 1 0.985* | 0.291 1 0.781
Recall 0.799 0.16 | 0.005 | 0.965 | 0.97* | 0.135 0.92 1 0.195 | 0.955 || 0.61

Garcia, et al., 2009). In our case, each binary classification problem consists of 10% positive class and
90% negative class; any dumb algorithm could easily achieve 90% prediction accuracy by putting all
the testing samples into the negative class; the overall accuracy of 90% looks quite satisfactory, but the
accuracy of the minority class being actually 0% should be emphasized. To deal with this kind of imbal-
anced data, we follow the improvement discussed by Zong, Huang, and Chen (2013), who introduced a
straightforward solution of associating a higher C value to the minority class. Concretely for the k-th
classifier, we define an 100x 100 diagonal matrix Q%) associated with every simulation/training sample
ﬁi; specifically if ﬁi belongs to a minority class (i.e. positive class in our case), the associated weight
Qg’ki) should be relatively larger than others. The detailed means for defining the specific weight for each

sample can be found in (Zong et al., 2013). Without losing generalization ability, the output weight
(k)

matrix Wy

of the k-th binary classifier is trained with a formula adapted from Eq. (15):

H/ (& +Q®HH])'HGE), 1, > 100
wh T kR k . k=1,2,....10, (19)

output ~
(z +H Q®H,)'H] WG, I, <100

where H, denotes the feature space of the k-th network /classifier, which is calculated with Eq. (14); L,
and C,, are the classifier-specific parameters that need to be selected by us via grid search activities. We
report the optimal parameters (L, and C}), average prediction accuracy (Mean Acc.), and standard de-
viation (Dev.) of accuracies in Table 3, in which the highest score(s) is indicated in bold; the second best
one(s) is noted with an asterisk*; and the worst score(s) is underlined. The first and foremost conclusion
drawn from Table 3 is that the mean accuracy of all 10 binary classifiers reaches 94.4%, greatly prevail-
ing the best accuracy achieved (merely 84%) by the unified multinomial classifier (section 3.3.2). From
accuracy and stability (standard deviation) perspectives, the 4,5,7,8,10-th categories reach competitive

performances, which implies that our micro-model can unambiguously simulate those 5 correspond-
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ing situations. Although the accuracies for class 1,3, and 9 appear inferior than that of others, they all

surpass 87% without exception.

Usually prediction accuracy is widely used to measure the effectiveness of a classifier; but as mentioned
previously, in presence of imbalanced data, this metric may just fail to provide adequate information
on the comprehensive performance. To give more insight into the accuracy obtained within each class
in lieu of the accuracy of all the samples, we also evaluate the performance with precision and recall;
precision is the rate of true positives (noted as ¢ p) from all retrieved positives given by the algorithm
while recall gives the rate of ¢p from all the positives in the dataset. For our case, we execute each
network /classifier for 200 times, thus we use the following equations to compute the macro-average

precision and recall for each class:

N =1, =i,
Precision = —= = , Recall = 5 = (20)
it +fp;) i (tpi+fn;)

where for the i-th trial /execution, ¢ p; denotes the number of samples belonging to positive class that are
correctly classified; f p; is the number of samples that are incorrectly classified as being of positive class
when actually they belong to a negative class; f 7, represents the number of samples that are incorrectly
classified as belonging to negative class when in fact they belong to positive class. The precision and
recall scores are shown in the lower part of Table 3, from which we find that the mean precision score
(78.1%) over 10 classes is much superior to the mean recall score (61%); nevertheless, both of them
are significantly better than random guesses (i.e. 50%), indicating that our micro-model turn out to be
generally discriminative when simulating minor situations. Ideally, we expect to make both precision
and recall simultaneously as high as possible, however they are inversely related (Jizba, 2000), which
means that we can only struggle to achieve a better compromise (e.g. Class 1, 4, 5, 7, 8, and 10 in
Table 3) between them. On imbalanced dataset, either low precision or recall score may bring down
the overall accuracy, but only within a certain limit (e.g. Class 2, 3, 6, and 9 in Table 3). Moreover, the
inferior precision and/or recall scores for Class 3, 6, and 9 might just resemble and explain the results

shown in Figure 10(b).

To provide a comprehensive visual illustration of the performance for each binary classifier, we also

present ROC graphs (Fawcett, 2006) in Figure 11(b)~(1), where a classifier corresponds to a point. As

31

demonstrated in Figure 11(a), x-coordinate of the point represents false positives rate (f p; /#NegativeSample)

and y-coordinate represents true positives rate (¢ p; /#PositiveSample), so that classification results for

both positive and negative class are perceivable with a single point. In other words, precision and recall
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Figure 11: The quantitative evaluation results using receiver operating characteristics (ROC) graph:
(a) the demonstration of ROC; (b~1) per-class ROC analysis for every one-vs.-all binary classifier.

are essentially a way of describing one single point on the ROC curve; and the performance exhibited
by ROC graph is independent of class distribution (Zong et al., 2013). In Figure 11(a), the classifier
denoted by point Z(0,1) is the optimal classifier, which can classify all samples correctly in both pos-
itive and negative class; classifier P(0.3,0.8) achieves 80% accuracy for positive class and 30% accuracy
for negative class; the diagonal points, such as B, C, and D, represent random classifiers that generate
random guesses about the sample label. On the other hand, points below the diagonal (e.g. yellow

points) are in no way bad classifiers; they are actually consistent to the symmetric points within the
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upper triangle and can be obtained by reversing the label sign of each sample. Hence, the upper trian-
gle rather than the lower triangle is of our interest. In short, for a certain category/class of passenger
flow [Figure 11(b)~(1)], the larger the green shadowed area is, the better our micro-model is capable of
simulating that very category. In this way, we can not only estimate the overall and per-class simulation
quality, but also easily rank all simulated cases by their level of simulation difficulty (e.g. from easy to

hard): Class 4,8,10=7=5=2=1=6=9=3.

3.4 Qualitative Case Study: Interior Seat Layout

Have validated simulation capability based on the typical seat arrangement of SL C20 subway carriage,
designers could hereafter apply our micro-model to subway carriage design activities in various ways.
As a lightweight example, we will present how we qualitatively evaluate different interior seat distri-
butions using our micro-model. The case study methodology (Kitchenham, 1997) will be adapted in
this section, which involves testing a model on different design candidates with a set of predefined

lightweight assessment focuses.

In order to support on-demand agent creation, we optimize our source code in a way that an agent can
be added at the very position where a mouse click occurs, which gives us the maximum possibility and
flexibility to simulate different scenarios in which passengers enter the subway carriage. For instance,
we could simulate the burst-out behavior of passengers by putting new agents one by one at certain
locations where the doors are supposed to be; we could also add agents at some odd positions, for
example directly in front of another agent, to see how they would react against the artificially created
problematic situations.

Door (16) Door (18)
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Figure 12: A screen-shot of “left-right sub-carriage imbalance” in the SL C20 subway carriage.

3.4.1 Problems of the Existing Seat Layout
In the course of both in-field observation and micro-model simulation, we have observed some prob-
lems caused by the existing seat layout in SL C20 carriage. As Figure 12 illustrates, people are not willing

to traverse between the left and right part of the carriage; if too many people enter the carriage from
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the right sub-carriage door (18), the over-crowding incident tends to emerge in the right sub-carriage
while the left sub-carriage remains relatively empty. We refer to this problem as “left-right sub-carriage
imbalance”. Another problem with the existing seat setting in SL C20 subway carriage is called “door-
way jam” (Figure 13), which occurs because passengers who decide to stand beside the doors have less
possibility /willingness to leave these doorway areas. Even if new passengers shove them, they tem-
porarily move a little and then return to original positions when possible; and it might directly reflect

the fact that overcrowding incidents often happen in doorway areas in real life.

9 © @333 @@I 000
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Figure 13: A screen-shot of “doorway jam” phenomenon in the SL C20 subway carriage.

3.4.2  Analysis of a New Seat Layout

Observing the SL C20 subway carriage, we find passengers tend to stand along the wall in a row next to
each other. So we assume that keeping areas near walls clear by removing the seats from those areas may
contribute to utilizing space efficiently and satisfying passengers easily. A new form of seat distribution
(Figure 14) is therefore designed and tested with our micro-model. There are 21 seats placed in the
middle of a carriage with 4 aisles between them; and for simplicity, all seats are occupied by stationary
passengers during the whole simulation process. It is delightful that there are no longer “left-right sub-
carriage imbalance” or “doorway jam” problem observed in the carriage with the new seat layout, in
which the newly entered passengers can unimpededly walk to other parts of the carriage. They would
like to look for comfortable positions within the entire carriage and do not prefer gathering in the

doorway area any more.

Door (16) Door (18)
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Figure 14: A new design of seat layout by emptying wall areas in the SL C20 subway carriage.
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However, a few new problems are brought forward by the new seat distribution. The first new problem
is “pivot blocking”, meaning that passengers with lower moving speed sometimes block the pivot of
pedestrian flow. This phenomenon becomes even more serious with the new seat distribution. As
soon as pivot passages are blocked by one or more agents, it is rather difficult for other agents to diffuse
between upper and bottom part of the carriage, as shown in Figure 15. The new seat layout is also
problem-prone in the sense that passengers who will get off from the other side (upper/bottom) of the

carriage must traverse one of the pivots.

T — — — — —— —— —— —

Upper Sub-carriage

bod@oooocoocoood@ocoood

Pivot Pivot Pivot Pivot

Bottom Sub-carriage

Figure 15: An example of “pivot blocking” in the SL C20 carriage with the new seat distribution.

The 21 seats in the new layout actually create a “wall”, separating the whole carriage into 2 narrow
spaces: “upper sub-carriage” and “bottom sub-carriage” (Figure 15), in which passengers with lower
moving speed tend to block the horizontal way. With the existing SL seat setting, when somebody gets
in the horizontal way, passengers have to detour vertically and continue to walk horizontally; we call
this phenomenon “vertical detour difficulty”. In the new seat layout, as observed from Figure 16, the
vertical detour space becomes smaller because of the “wall” created by seats; hence a so-called “left-right

sub-carriage imbalance” problem may emerge due to frequent “vertical detour difficulty”.

0
OC0000 0000000y
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Figure 16: The “left-right sub-carriage imbalance” problem caused by “vertical detour difficulty”.

Another obvious disadvantage with the new seat setting is that there are fewer seats (21 seats) than the
existing SL C20 seat layout (39 seats); thus the existing layout appears to be better in that it is capable of
offering more passengers a comfortable trip. There are of course other advantages and/or disadvantages
lying in this new seat layout, which awaits uncovering. We believe qualitative observation of micro-

model executions is equally important (to quantitative approaches) for guiding the subway carriage
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design. But sometimes, simple qualitative analysis like the one presented above is not enough to support
or oppose a specific design solution, in the case of which, a complete evaluation of the design solution

requires comprehensive methodological experiments and quantitative oriented analysis.

4 CONCLUSIONS AND PERSPECTIVES

This paper describes the common dilemma of design approaches and investigates the value of using
multi-agent microsimulation framework for design. More importantly, we discussed our way of build-
ing and evaluating the multi-agent micro-model for assisting subway carriage design. We particularly
address our micro-model in a great detail from essential aspects of environment space, agent attributes,
agent behaviors, simulation process, and global objective/convergence function. Based on the sim-
ulated data, we propose learning complex nonlinear SLFNs, which are then used for quantitatively
measuring the simulation quality of our model by predicting the category of real data. We invented
two versions of evaluation approaches: “unified multinomial classifier” and “one-vs.-all binary classi-
fiers”, both of which show that our micro-model matches the reality in the majority of situations (the
overall matching ratio: 84% and 94.4% respectively). Despite of much superior scores for the second
one-vs.-all approach, our experimental comparison further supports the preference of the second ap-
proach in that one-vs.-all classifiers provide a more comprehensive understanding of micro-models via
per-category precision/recall and ROC analysis/ranking. To complement quantitative evaluations, our
model is simultaneously used in a qualitative manner to evaluate a new seat distribution design in C20
subway carriages; from this small-scaled case study, we manage to spot a number of advantages and/or

disadvantages with little effort.

It is worth mentioning that it is simply impossible and unnecessary for a micro-model to simulate
every single detail of reality (Ball, 2000). To make the model more fine-grained, we may need to add
new attributes, environmental inputs, and behavioral outputs to the agent prototype; but the eventual
granularity of the model should be determined by the objectives of designing activities. For example
in our micro-model, some passenger behaviors are beyond our current scope, such as seat searching,
clustering/grouping (Greengard, 2011), and queuing; and we will probably address these behaviors in

our future perspectives.
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