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ABSTRACT: A general and easily implemented method for alignment in microsimulation models is pro-
posed. Most existing alignment methods address the binary case and they typically put special emphasis on one
of the alternatives rather than treating all alternatives in a symmetric way. In this paper we propose a general
mathematical foundation of multinominal alignment, which minimizes the relative entropy in the process of
aligning probabilities to given targets. The method is called Logit Scaling. The analytical solution to the align-
ment problem is characterized and applied in deriving various properties for the method. It is demonstrated
that there exits an algorithm called Bi-Proportional Scaling that converges to the solution of the problem. This
is tested against two versions of the Newton-Raphson-algoritm, and it is demonstrated that it is at least twice as
fast as these methods. Finally, the method is not just computational efficient but also easy to implement.
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1 INTRODUCTION

Alignment is the core facility for controlling microsimulation models. Microsimulation models are large, elab-
orate models that need such a tool at the macro level. Alignment works by manipulating the probabilities of
the model, aiming to domodel calibration, comparative analysis (static or dynamic) and/or to eliminate Monte-
Carlo noise.

In amore technical sense, alignment canbe said todooneof two things:mean-correctionor variance-elimination1.
The focus of this paper is mean-correction, meaning the process by which you manipulate the probabilities of
the individuals such that i) you hit a predefined mean/average propensity for the entire group, and ii) the ma-
nipulation is as gentle as possible (discussed below). Mean-correction alignment makes it possible to calibrate
themodel and do comparative analysis. The other kind of alignment, here called variance-elimination, is equiva-
lent to the abovementioned elimination ofMonte-Carlo noise. Inmicrosimulationmodels, events are typically
modeled bydrawing a uniformly distributednumber and comparing it to a probability associatedwith the event
occurring. This Monte-Carlo technique introduces noise into the model. Such noise can be eliminated from
the model, using alignment techniques (Bækgaard, 2002).

Most existing alignment methods address the binary case and they typically put special emphasis on one of the
alternatives rather than treating all alternatives in a symmetric way (for a review, see Li & O’Donoghue, 2014).
In this paper we propose a more general mathematical foundation of multinominal alignment. Our mean-
correction alignment method is called Logit Scaling, and is defined as a method that minimizes the information
loss in the adjustment process. The analytical solution to the alignment problem is characterized and further-
more applied in deriving various properties for the method. It is demonstrated that there exits an algorithm
called Bi-Proportional Scaling that converge to the solution of the problem. This is tested against two versions
of theNewton-Raphson-algoritm, and it is demonstrated that it is at least twice as fast as thesemethods. Finally,
it is argued, that the method is very easy to implement.

The practical implementation of Logit Scaling is very simple. AssumeN individuals can be in one ofA alterna-
tive states, and that you have probabilities p0ia for all individuals i ∈ {1,...,N} and alternatives a ∈ {1, ..., A} .
We necessarily have that

∑
a p

0
ia = 1 for all i and p0ia ≥ 0 for all i and a. In the alignment process you would

like to find new probabilities pia such that the aggregated number of individuals in the various states satisfies
certain targets: ∑

i

pia = Xa, 1 ≤ a ≤ A.

The algorithm we use is called Bi-Proportionate Scaling and is demonstrated in Algorithm 1. Initially let pia =
p0ia.Think about pia as amatrix withN rows andA columns. Scale all columns such that the alignment targets
are satisfied

(∑
i pia = Xa

)
. Then scale all rows such that

∑
a p

0
ia = 1 for all i.Repeat this until the system

converges. In real-world problems the algorithm converges very quickly even for many individuals and states.
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Algorithm 1 The Bi-Proportionate Scaling alorithm used in Logit Scaling.
Require: Initially pia = p0ia

Ensure:
∑

i pia = Xa

1: while not converged do

2: Scale columns with γa’s: pia := γapia such that
∑

i pia = Xa

3: Scale rows with αi’s: pia := αipia such that
∑

a pia = 1

4: end while

2 WHAT IS A GOODALIGNMENTMETHOD?

Wewould like to start by defining what a goodmean-correction alignmentmethod is. The points in the follow-
ing list ensures that the alignment method is theoretically sound and useable at the same time:

1. Adjust correctly to the target means

2. Retain the original shape of the probability distribution

3. Retain zero probabilities

4. Symmetric formulation

5. Multinominal alignment

6. Ability to work well in a logit environment

7. Computer efficiency

8. Easy implementation

Points 1) and 2) are similar to the first two points in Li & O’Donoghue (2014). The idea of mean-correction
alignment is to be able to change the mean of the probability distribution. Therefore the method should be
precise when it comes to adjusting to a new target (point 1). Let’s try to make this more precise. Consider a
population ofN individuals, and a numberA of alternatives the individuals can be in. Let pia be individual i′s
probability of entering alternative a (i = 1, ..., N and a = 1, ..., A). In a binary modelA = 2. Because we are
working with probabilities we should necessarily have that∑

a

pia = 1, i = 1, ..., N

LetXa be the number of persons in alternative a (such that
∑

a
Xa = N ). The expected number of persons
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in alternative a is given by:
E [Xa] =

∑
i

pia, a = 1, ..., A

We can now define mean-correction alignment:
Definition 1. Let p0ia (i = 1, ..., N and a = 1, ..., A) be the initial probabilities in a population. A mean-
correction alignment to a target

(
X1, ..., XA

)
is a set of aligned probabilities pia, (i = 1, ..., N and a =

1, ..., A) such that: ∑
i

pia = Xa, a = 1, ..., A (2.1)

∑
a

pia = 1, i = 1, ..., N (2.2)

pia ≥ 0, i = 1, ..., N, a = 1, ..., A (2.3)

Observe that this definition only involves the aligned probabilities. Nothing is said about the link between
the initial and the aligned probabilities. This is the subject of point 2: a very basic demand for an alignment
method is that it makes as little harm as possible to the original probabilities, in the sense that we strive to retain
the shape of the original distribution. A way to handle this is to define a distance measure that measures the
difference between the initial probabilities and the alignedprobabilities. LetP be aN×Amatrix containing the
pia−elements. LetD

(
P, P 0

)
be our measure. A precise version of point 2 would be to minimizeD

(
P, P 0

)
given the restrictions in Definition 1. We will return to this optimization problem later.

The third point in our list deals with zero probabilities. Saying that a probability is zero is a very strong state-
ment. It means that something is impossible. An alignment method should therefore retain zeroes such that
what is impossible before the alignment is also impossible after the alignment.

The fourth point on the list is symmetric formulation. A good example of an asymmetric alignment method is
the often usedmultiplicative scaling (Li&O’Donoghue, 2014). According to this kind of alignment you choose
one of the alternatives (let’s say alternative 1) and scale the probabilities to the desired level:

pi1 = λp0i1

where the scaling factor λ is defined by ∑
i

pi1 =
∑
i

λp0i1 ≡ X1

If we have two alternatives, the probability of the other alternative is given residually

pi2 = 1− pi1

This is clearly asymmetric. If we had chosen to scale the probabilities of the second alternative instead, wewould
have had another alignment. This is not satisfying as the alignment method introduces arbitrariness into the
analysis. This asymmetry seems not to be a well-known property in the microsimulation community. As an
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example it is not mentioned in Li &O’Donoghue (2014). We give an graphical example in section 3.2.

The only way to make sure that the alignment formulation is symmetric, is to make a definition based on all
alternatives. A good alignment method should therefore depend on all the initial probabilities and some pa-
rameter vector θa

pia = fa
(
p0i1, ..., p

0
iA; θa

)
, a = 1, ..., A

This is typically not the case in the most used alignment methods (Li &O’Donoghue, 2014).

A good alignment technique should generalize easily to themultinominal case (A > 2). As mentioned above,
most alignment methods are binary. Multinominal problems are often solved by a sequence of binary align-
ments. This is also a source of arbitrariness. If we change the order of the binary alignments we potentially get a
different total alignment. It is therefore preferable to have amethod that is designed to the generalmultinominal
case.

The final 3 points on the list have to do with the usability of the method. The logit specification is one of the
most used methods to estimate probabilities. It is therefore a nice feature if an alignment method works well
with this specification2. Finally it is important for the usability of a method to have both computer efficiency
and ease of implementation. These two goals can be conflicting goals. As will be demonstrated later, this is not
the case here.

3 AMULTINOMINAL ALIGNMENTMETHOD

You can think about alignment as a method for manipulating probability distributions. Define

qia ≡
1

N
pia

where N is the number of individuals. Q = {qia|i = 1, .., N ; a = 1, .., A} is a joined discrete probability
distribution simultaneously decribing preferences (the A alternatives) and heterogenity (the N individuals)3.
LetQ0 be the initial probability distribution. According to definition 1, amean-correction alignment to a target(
X1, .., XA

)
is a new probability distributionQ satisfying:

∑
i

qia =
1

N
Xa, a = 1, .., A

∑
a

qia =
1

N
, i = 1, .., N

qia ≥ 0, i = 1, ..N, a = 1, .., A

Wewould like to satisfy these linear restrictions with as little change in the distribution as possible.

Our way of solving this problem is inspired bymethods developed in finance during themid 90s (Stutzer, 1996;
Kitamura & Stutzer, 1997; Buchen & Kelly, 1996). The basic idea is to minimize the relative entropy between
the two distributions, subject to the additional restrictions imposed on the new distribution. In Stutzer (1996)
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the goal is to modify a nonparametric predictive distribution for the price of an asset to satify the martingale
condition associatedwith risk-neutral pricing. InKitamura& Stutzer (1997) the goal is to provide an alternative
to generalized method of moments estimation in which the moment conditions holds exactly. In Buchen &
Kelly (1996) it is demonstrated how to estimate a distribution of an underlying asset from a set of option prices.
The method has been used by Robertson et al. (2005) for VAR model forecasting. For an overview of the use
of entropy in finance, see Zhou et al. (2013).

The entropy measure used in the above papers is the Kullbeck-Leibler Information Criterion (KLIC) distance
fromQ0 toQ (White, 1982):

D
(
Q,Q0

)
=

∑
i

∑
a

qialog

(
qia
q0ia

)
(3.1)

=
1

N

∑
i

∑
a

pialog

(
pia
p0ia

)

This is also called the Relative Entropy. It is well-known that D
(
Q,Q0

)
≥ 0, with equality if and only if

Q = Q0.The KLICmeasures the information gained when one revises one’s beliefs from the prior probability
distribution Q0 to the posterior probability distribution Q. In our use of the concept we therefore wish to
minimize the information loss from moving away from the original distribution. The KLIC is a special case of
a broader class of divergences called f-divergences as well as the class of Bregman divergences. It is the only such
divergence over probabilities that is a member of both classes.

The KLIC is not a truemetric as it is not symmetric (D
(
Q,Q0

)
6= D

(
Q0, Q

)
). Even so, it is a premetric and

generates a topology on the space of probability distributions. To see that it actually works as it should, let us
look at the binary case. Define:

Di =
∑
a

qialog

(
qia
q0ia

)
In the binary case we have

Di = qi1log

(
qi1
q0i1

)
+ (1− qi1) log

(
1− qi1
1− q0i1

)

For which value of qi1 is this function minimized? ForDi to be a distance measure we would prefere qi1 = q0i1

to minimize the function, and this is surely the case. Differentiation yields:

∂Di

∂qi1
= log

(
qi1
q0i1

)
− log

(
1− qi1
1− q0i1

)

and ∂Di
∂qi1

= 0 if and only if qi1 = q0i1. In Figure 3.1 an example is shown. It is assumed that q0i1 = 0.2. For
comparison the dashed curve shows a

(
qi1 − q0i1

)2 where a is chosen such that the the curves are close to the
right of q0i1. It can be seen that KLIC acts much like quadratic distance to the right of the minimum, but has
more curverture to the left.

We would like to minimize the information loss D given the restrictions (2.1), (2.2) and (2.3) from definition
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Figure 3.1: Example of binary KLIC (solid line) compared to quadratic distance. It is assumed that q0i1 = 0.2.

1. The restriction (2.1) makes sure that we satisfy 1) in our list (ability to adjust correctly to the target means).
The fact that we minimize the information loss satisfies 2) in the list (ability to retain the original shape of the
probability distribution). ’Symmetric formulation’ and ’multinominal alignment’ follows automatically (point
4 and 5).

We can now derive our new alignment method:

Definition 2. Let p0ia (i = 1, ..., N and a = 1, ..., A) be the initial probabilities in a population. A Relative-
Entropy-Minimizing Mean-Correction Alignment to a target

(
X1, ..., XA

)
is a set of aligned probabilities pia

that minimize (3.1), given the restrictions (2.1), (2.2) and (2.3).

And we can prove the theorem:

Theorem 3. Let p0ia (i = 1, ..., N and a = 1, ..., A) be the initial probabilities in a population. In a Relative-
Entropy-Minimizing Mean-Correction Alignment the aligned probabilities pia are given by:

pia =
eϕap0ia∑
s e

ϕsp0is

where the parameters ϕa satisfy: ∑
a

ϕa = 0
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Proof. (White, 1982) Define the Lagrange-functionL:

L =
∑
i

∑
a

pia
(
log (pia)− log

(
p0ia
))
−
∑
i

λi

(∑
a

pia − 1

)
−
∑
a

ϕa

(∑
i

pia −Xa

)

The first order derivatives are given by

∂L

∂pia
=
(
log (pia)− log

(
p0ia
))

+ 1− λi − ϕa = 0

such that:
pia = eλi−1eϕap0ia (3.2)

Sum over the alternatives a (using (2.2)):∑
a

pia =
∑
a

eλi−1eϕap0ia = 1

such that

eλi−1 =

[∑
a

eϕap0ia

]−1
Inserting this into (3.2) yields:

pia =
eϕap0ia∑
s e

ϕsp0is

Observe that the Lagrange-parameters ϕa are not unique, as

eϕap0ia∑
s e

ϕsp0is
=

ex+ϕap0ia∑
s e

x+ϕsp0is

We can therefore assume that ∑
a

ϕa = 0

Observe that pia ∈ [0, 1] and that 3) is satisfied (retaining zero).

3.1 LOGIT SCALING

Wewill actually prefere to give ourmethod the catchier nameLogit Scaling. Themethod fits perfectly a situation
where the initial probabilities are supplied from a logit-model (point 6 in the list). Assume the probabilities are
given by

p0ia =
eV

0
ia∑

s e
V 0
is
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where V 0
ia are some logit-utilities. Then according to theorem 3:

pia =
eϕa+V 0

ia∑
s e

ϕs+V 0
is

The alignment is done by adding alternative-specific constants to the logit-utilities. As a corollary to this, if the
preferences of the agents change in an additive way, the probabilities can be corrected with alignment. This is
similar to the result in Li &O’Donoghue (2014) where it is shown that a “biased intercept” in a logit model can
be corrected with some of the alignment methods (“Sidewalk hybrid with non linear adjustment” and “Sort by
the difference between logistic adjusted predicted probability and random number”). Here we give a mathe-
matical explanation.

After an alignment, the scaling parametersϕa canbe calculated andused to solve the followingproblem: assume
we have a logit model describing some events in our microsimulation model. In the base run of the model
we align these logit probabilities to given macro levels. In an alternative analysis we would like to calculate
the behavioral responses using the logit model. But how can we do that when we have manipulated our logit
probabilities in the alignment process?

Assume the logit model is given by

p0ia =
eβax

0
i∑

s e
βsx0i

where x0i is a vector characterizing individual i and βa is a vector of logit-parameters for each alternative a. Let
the aligned probabilities be:

pia =
eϕa+βax0i∑
s e

ϕs+βsx0i
(3.3)

Now assume we would like to analyze the effect of changing x0i to xi for all individuals i.Having calculated the
ϕ′as we can calculate the new probabilities p̂ia :

p̂ia =
eϕa+βaxi∑
s e

ϕs+βsxi

These probabilitieswill give the best possible representationof themarginal effects of the changed characteristics
of the individuals.

If the aligned probabilities pia are known, it is possible to calculate the ϕ′as. It can be derived that, for any i:

ϕa = log

(
pia
p0ia

)
− 1

A

∑
s

log

(
pis
p0is

)
(3.4)

This is so-called centered log-ratios known from compositional data analysis (Aitchison, 1986). Even if we are
not doing the alignment via a direct calculation of theϕ′as (an idea we will introduce in the next section) we can
calculate them from (3.4).
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In the binary case (A = 2) it can be proven that

ϕa =
1

2

(
log

(
pia

1− pia

)
− log

(
p0ia

1− p0ia

))

such that the scaling factors are calculated from changes in log-odd-ratios.

3.2 An example

Let us consider a simple example. We have two alternatives (A = 2; death or survive) and two individuals
(N = 2). We assume that the death probability of the first person is p1 = 0.2 (such that the probability of
survival is 0.8) and the death probability of the second person is p2 = 0.4. The expected number of deaths in
this tiny microsimulation model is 0.2 + 0.4 = 0.6. Let us assume we want to increase the expected number
of deaths to 0.85. We will do this by alignment.

The first method we will use is the popularMultiplicative Scaling (Li & O’Donoghue, 2014). The initial point
is A in the figure. The alignment process shouldmove us to some point on the downward sloping curve defined
by p1 + p2 = 0.85.With multiplicative scaling we have to possibilities4: scaling up the probabilities of death
or scaling down the probabilities of survival. If we scale up the probabilities of death we move from A to B. If
we scale down the probabilities of survival we move from A to C. As we can see there is a significant difference
in the resulting alignments.

Another problem associatedwithmultiplicative scaling is that the aligned probabilities can exceed 1. If the death
probabilitis is scales up to a certain level we reach the point Z. Here the probability of death for person 2 is 1.
Any further scaling will imply a death probability larger than 1. Likewise, if the probabilities of survival is scaled
enough, we reach the point Y.

Now let us consider Logit Scaling. In the binary case we have from theorem 3 that:

pi =
eϕp0i

eϕp0i + e−ϕ
(
1− p0i

) (3.5)

ThemicrosimulationmodelDYNACANuses an algorithm called ’SidewalkwithNon-Linear Transformation’
(Li & O’Donoghue, 2014). This non-linear transformation is given by:

p =
ap0

1 + (a− 1) p0
, a > 0.

We can re-write (3.5) to:

pi =
e2ϕp0i

1 + (e2ϕ − 1) p0i

such that the transformations are identical for

a = e2ϕ
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Figure 3.2: Alignment methods

In the figure the solid non-linear curve shows all possible alignments for varying values ofϕ.The current align-
ment is the point D. Observe that comparet to multiplicative scaling, the method is a compromise between
point A and B. Also observe that the system can be aligned to any number of deaths between 0 andN = 2.

4 BI-PROPORTIONAL SCALING: ANALGORITHMIC SOLUTION

So far the alignment method seems to have nice theoretical properties, but how about the practical side of the
equation? If we substitute the results of theorem 3 into equation (2.1), we get the following problem: choose
parameters ϕa, a = 1, ..., A, such that: ∑

a

ϕa = 0

∑
i

eϕap0ia∑
s e

ϕsp0is
= Xa, a = 1, ..., A− 1

This is a system of A non-linear equations with A unknowns. As A is typically small (2 to 10), this is not a
big equation system. But from a computational point of view it is a problem that we sum over the number of
individuals i.This can be a very big number (up to millions). We therefore need a fast algorithm.
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Time (Sec.) ϕ1 ϕ2 ϕ3

Newton-Raphson (Standard) 3.94 0.53841805 -0.58964392 0.00557946
Newton-Raphson (Optimized) 1.45 0.54167153 -0.59175494 0.00659708
Bi-Proportional Scaling 0.60 0.53841807 -0.58964390 0.00557951

Table 1: Comparing Bi-proportional scaling with two Newton-Raphson algorithms (N = 1.000.000, A = 4). The centered
log-ratiosϕ′

as are the output of the Newton-Raphson algorithms. In the case of Bi-Proportional Scaling they are calculated using
(3.4).

The standard computationalway to solve a set of non-linear equations is touse theNewton-Raphson algorithm.
This algoritm works by making a local linear approximation of the system (the Jacobian mitrix). This linear
system is solved (the Jacobian matrix is inverted), and by repeating the process it is possible to converge to the
solution of the non-linear set of equations.

Using the Newton-Raphson algoritm implies the calculation of the A × A Jacobian matrix in each iteration,
where each element in this matrix is a sum over all individuals. A considerably faster approach isBi-proportional
scaling. Look at the original problem: minimize (3.1) given (2.1) and (2.2). This is actually aMatrix Balancing
Problem (Schneider & Zenios, 1990). Instead of the initial matrixP 0 we should choose another matrixP , such
that the difference between the matrices is as small as possible, and such that the row sums are given (see 2.2)
and the column sums are given (see 2.1). It is well known (McDougall, 1999) that if the measure of difference
between the matrices is Relative Entropy, then there exists a simple algorithm that converges to the solution
of the matrix balancing problem. This algorithm is called bi-proportional scaling and is very simple and fast.
You start out with the original matricP 0. In this matrix the row sums are 1 because we work with probabilities.
The column sums are equal to the expected numbers of outcomes distributed on theA alternatives. First you
scale the columns such that the colums sums are correct according to the restrictions, i.e. the expected numbers
are equal to the alignment targets. Then you scale the rows such that the column sums are correct (sums to 1
again). But then the column sums are not correct any more. If you repeat this process again and again, you will
realize that the errors in the column sums will decrease dramatically, and the systemwill converge. In real world
problems the convergence is very fast (often less than 10 iterations). We therefore have a very surprising result:
our very non-linear problem can be solved by simpel iterative scaling.

The method is tested against two versions of the Newton-Raphson algorithm, a standard version and an op-
timized version (see table 1). The reason for this comparison is twofold: first, it is proven that Bi-proportional
scaling is faster then the standard method (even when it is optimized), and second, it is demonstrated that the
methods yields the same results.

In the standard version of the Newton-Raphson algoritm, the Jacobian matrix is calculated based on abstract
differentiation of the non-linear equation system. In each iteration the elements in thematrix is calculated by an
average over all individuals. Thematrix is inverted using the C#-libraryMath.Net. In the optimized version, the
procedure is the same except for the calculation of the Jacobian matrix. The elements in the matrix is averaged
over a sample of 10 pct. of the individuals. This improves the speed, only slightly compromising precision.

The artificial population is 1.000.000 individuals with 4 alternatives. The artificial set of probabilities are cal-
culated by drawing 1 mill. numbers from each of 4 normal distributions5. If (xi1, xi2, xi3, xi4) are these 4
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number for individual i, the probabilitis are calculated as:

pia =
xia∑4
s=1 xis

The result of the test is given in Table 1. Bi-proportional scaling ran twice as fast as the optimized Newton-
Raphson, andmore than6 times faster than the standardNewton-Raphson. Ifwe look at the centered log-ratios
we see that these are practically identical for the standard Newton-Raphson and Bi-Propotional Scaling. As
mentioned the speed of the optimizedNewton-Raphson resulted in a somewhat lower precision. This precision
cost is not observed for Bi-Proportional Scaling.

The final point on the list is ease of implementation. It tookmore than a week to develop and test the Newton-
Raphson algorithms. When the idea came to the author, it took half an hour to code bi-proportional scaling,
showing the power of the approach.

5 CONCLUSION

A general mathematical foundation of multinominal alignment in microsimulation models is derived. The
alignment problem is characterized as the solution to an optimization problem. The analytical solution to this
problem is characterized and applied in deriving various properties for themethod. It is demonstrated that there
exits an algorithmcalledBi-Proportional Scaling that converges to the solutionof theoptimizationproblem, that
the newmethod is more general than existing methods, and that it is fast and easy to implement.
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