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ABSTRACT: We present a procedure for creating a spatially referenced building stock with population living
therein “a synthetic city” for the case of Germany. The level of spatial disaggregation is the European NUTS–3
level for which data from the newest census (2011) exist. Our application is on the estimation of heat demand.

We use the German microcensus (2010) which contains both: (a) detailed sociodemographic characteristics of
individuals and (b) detailed information on the type of buildings in which these individuals live. With this data
we can generate not only a synthetic population but also a synthetic building stock. The microcensus records
the construction year and number of dwelling units of buildings. This allow us to classify the buildings for the
estimation of heat demand.
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This procedure has two major advantages: (1) there exist many models for the estimation of heat demand at
building level, we can make use of these models, and (2) with the microcensus as the only required data source
we are able to estimate heat demand at a spatially disaggregated level for the entire country.

We conclude our paper with an internal validation of the microsimulation model by means of the Total
Absolute Error TAE and present the first results from this model aggregated at the NUTS–3 level for the
entire country. We briefly discuss the observed patters of the results and attempt to hypothesize on the reasons
behind this patterns. We also discuss the difficulties of an external validation of this model and how we can
address them in the future.
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1. INTRODUCTION: CREATING A SYNTHETIC BUILDING STOCK

The development of a synthetic city representing the urban fabric of urban agglomerations has proved help-
ful for the development of urban models, the focus of this endeavour has been the use of remote sensing data
or other type of image and laser data available at a low aggregation level in order to generate urban structures.
Laycock and Day (2003) presents an overview of used data sources and methods for the generation of urban
structures. Parish and Müller (2001) used a procedural approach based on L-systems to generate urban struc-
tures. The authors use different maps as input for the generation of the geometrical representation of the city.
Our aim is to expand these methods by creating appropriate data regarding the building stock and the popula-
tion living and working on this building stock that can be used as input to these models for the generation of
synthetic cities. Kang, Ma, Tong, and Liu (2012) create a set of synthetic cities in order to asses the relationship
between urban morphologies and human mobility. Kii, Akimoto, and Doi (2014) develop a simple synthetic
city for the assessment of urban transport policies, the authors generate the synthetic city and use this data as
input for a land use model, subsequently the authors apply the postulated policies to the model in order to asses
them. The authors argue in favor of including user behaviour in urban models. Farber, Neutens, Miller, and
Li (2013) generate eighty different synthetic cities in order to analyze the Social Interaction Potential of these
environments based on commuting patterns and land use distribution. Bagchi, Sprintson, and Singh (2013) use
a synthetic city for the simulation of fire dispersion on an electrical distribution grid, in this case the authors
represent the building stock and an electrical grid. Mei et al. (2015) develop a synthetic city in order to study
the diffusion of infectious diseases. The authors use the synthetic city in order to understand the outbreak of
influenza in dense populated urban areas in China. In this case the authors do not require a detailed description
of the building stock geometry but only the building use. Stötzer, Hauer, Richter, and Styczynski (2015) de-
fine a simple synthetic city for the estimation of the potential load shift of commercial and residential electricity
demand. Because the authors are only interested in electric consumption, they do not create a geometrical rep-
resentation of the building stock nor do they have any type of geo-reference in the synthetic city. In this paper
the authors define the electric consumption as a function of household size. Many of the examples presented
above could be implemented on a more realistic environment describing the characteristics of the building stock
and the population living on them.

The development of a robust method for the creation of synthetic cities representing specific urban agglomer-
ations with known population aggregates constitutes the scope of this paper. This paper presents first results
from this endeavour. It is shown the developed method for the representation of a synthetic city, describing in-
dividuals and the characteristics of their households and the building they reside on. Here we do not discuss in
detail the pursued method for the representation of geo-referenced geometrical objects. We present some discus-
sion regarding the different alternatives to generate a geometrical representation of the synthetic city extending
the methods described in this paper.

The method used in this analysis is a spatial microsimulation method. Microsimulation, introduced by Orcutt
et al. (1977) is a commonly used method among social scientist used to simulate a large range of social phenomena
at a micro-level. The first step of this method is normally the generation of a synthetic population representing
the population under analysis. The spatial microsimulation methodology extends this concept by allocating es-
timated synthetic populations to geographical areas (Clarke & Holm, 1987). This simulation method is applied
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by a large number of disciplines. Brown and Harding (2002) and Smith, Pearce, and Harland (2011) argue the use
of this type of models for the analysis of health systems, the modeling of resources consumption is addressed by
Williamson, Clarke, and McDonald (1996); Williamson, Mitchell, and McDonald (2002) for the estimation of
water consumption and Chingcuanco and Miller (2012) and Muñoz H. and Peters (2014) for the estimation of
energy demand. Many transport models use this approach for the generation of synthetic populations (Farooq,
Bierlaire, Hurtubia, & Flötteröd, 2013). For overview of spatial microsimulation models, its applications and
methods see (Tanton, 2014; O’Donoghue, Morrissey, & Lennon, 2014). In this paper we make use of an “gen-
eralised regression weighting” (GREGWT) algorithm to create a synthetic population. We use the available R
library (Muñoz H., Vidyattama, & Tanton, 2015a), implementing the GREGWT algorithm, originally devel-
oped by the Australian Bureau of Statistics (ABS) (Bell, 2000). This algorithm is used by the National Center
for Social and Economic Modeling (NATSEM) on their spatial microsimulation model spatialMSM (Tanton,
2007).

The presented paper is structured as follows: Section 2 presents and describes the used data for the analysis and
the undertaken steps in preparing the data for the simulation, the next section, Section 3, describes the compu-
tation method to estimate heat demand for each individual on the microcensus and the assumptions made for
this computation. Section 4 describes the method used for the reweighting of the microcensus with the com-
puted heating demand values. We benchmark the survey to benchmarks describing individuals, dwelling units
and buildings. These process is described under Section 5. The results from the simulation are described and
discussed under Section 6. On Section 7 we highlight the benefits and shortcomings of the developed method
and propose extensions to this method in order to address some shortcomings of the applied method. In the
last section, Section 8, we make a brief resume of the paper, its main findings and possible applications for the
infrastructure planning of urban environments.

2. DATA: CENSUS (2011) & MICRO CENSUS (2010)

In the literature we find two type of models for the construction of synthetic data: (1) synthetic reconstruction
and (2) reweighting (Rahman, 2008). The GREGWT algorithm forms part of the latter group. This algo-
rithm is a deterministic method that reweights a sample survey to match aggregated statistics available at small
geographical areas.

In order to create a synthetic population with the GREGWT method we need two data sets: (1) a survey sample
containing individual records and (2) aggregated statistics available at a NUTS–3 geographical level. For the
purpose of this simulation we want to create a synthetic population describing the demographic characteristics
of the individuals as well as characteristics of the dwelling units these individuals reside on. In order to generate
such a data set we select data describing three different aggregation units: (1) individuals, (2) household/dwelling
units and (3) buildings. Table 1 list the used variables from the two data sets.

The synthetic population is represented as the reweighted German micro census, we reweight this survey with
help of an R library implementing the GREGWT method (Muñoz H., Vidyattama, & Tanton, 2015a). The
GREGWT method is classified as a deterministic reweight method (Tanton, Williamson, & Harding, 2014).
Deterministic reweighting methods aim to reweight a survey to match known aggregated values of geographical
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Table 1: Used benchmarks from the 2011 Census and corresponding micro census attributes

MC Code∗ Census Code Unit∗∗ Description

EF1 / / Federal State (NUTS 2)
EF952 / Person Weight
EF44 ALTER KURZ Person Age (five classes of years)
EF49 FAMSTND AUSF Person Marital status (in detail)
EF46 GESCHLECHT Person Sex
EF20 HHGROESS KLASS Person Size of private household
EF368 STAATSANGE KURZ Person Citizenship

EF492 WOHNFLAECHE 20S Dwelling Floor area of the dwelling (20m2 in-
tervals)

EF494 BAUJAHR MZ Building Year of construction (microcensus
classes)

EF635 ZAHLWOHNGN HHG Building Number of dwellings in a building
∗Micro Census Code
∗∗Refers only to Census

areas. The sample size and availability of the data of these geographical areas vary between countries. For the
European Union a standard incorporating the different national definitions exist. This is the Nomenclature of
Territorial Units for Statistics (NUTS1) standard. This nomenclature describes four hierarchies: (0) national
territories; (1) NUTS–1; (2) NUTS–2; and NUTS–3. A reweighting of a national survey could be implemented
at any of the NUTS levels. Depending on the research question a suitable geographical area should be selected.
These geographical areas have different names on each country and the authors referee them according to the
use case location. These areas are known as: (a) Summary Files in the U.S.; (b) Profile Tables or Basic Summary
Tabulations (BSTs) in Canada; (c) and Small Area Statistics in the U.K. (Pritchard & Miller, 2012).

3. HEATING DEMAND

The heating demand is computed for each individual in the microcensus. For the computation of heating de-
mand of each individual we need to consider the characteristics of the building stock. In order to take these
characteristics into account we make use of the IWU building typology (Diefenbach, Cischinsky, Rodenfels, &
Clausnitzer, 2010; Loga, Diefenbach, & Born, 2011). We classify each individual to one of the 36 IWU building
typology types. For the estimation of heating demand per dwelling unit we need to take into account the house-
hold size and divide the estimated heating demand by its household size. For a household with four members
we compute the heating demand for each member of the family as kWh per dwelling unitm2. In order to get
the heating demand of the dwelling unit we sum the heating demand of each member divided by household
size. On this model the computed heating demand of each family member is the same, nonetheless if we where
to take user behaviour into account this values would differ from each other (Muñoz H., 2014). This is necessary
because the computed heating demand is the estimated heating demand per squared meter of dwelling unit. An
alternative to this would be to divide the dwelling unit area by household size.
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In order to classify the microcensus into the building types we use three parameters from the microcensus: (1)
building construction year, (2) dwelling unit size, and (3) number of dwelling units per building. A summary
of the rules applied to the microcensus to achieve this classification are listed in Table 4.

The main parameter used for the classification is the building construction year. We use the number of dwelling
units to differentiate between single family houses and multi-family houses. Finally, the dwelling unit size mul-
tiplied by the number of dwelling units is used to distinguish between small mutli-family housed, large multi-
family houses and high rise buildings. The specific heating values of the IWU building typology used in this
analysis are listed in Table 2.

Table 2: IWU-de building typology matrix for Germany
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EFHa 183 180 164 181 146 155 118 132 110 88
RH 153 137 156 106 127 127 98 78 86
KMH 190 143 168 156 129 134 118 122 92 79
GMH 127 144 142 131 117
HH 114 113

source: (Loga et al., 2011) (a) Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]

(EFH) Single family house “Einfamilienhaus”; (RH) Terrace house “Reihenhaus”; (KMH) Apartment house “Mehrfamilienhaus”;
(GMH) Large apartment house “Großes Mehrfamilienhaus”; (HH) High-rise “Hochhaus”;

The advantage of using a building typology for the estimation of heating demand is that we don’t need to
take assumptions about the building geometry. This is because the values listed under the building typology
represent specific heating demand. In order to compute the absolute heating demand we simply multiply this
value by the building square meters. In order to explicitly account for building geometry we need to allocate
individuals to a digital cadastre describing the building properties, see (Muñoz H. & Peters, 2014).

The disadvantages of using the digital cadastre for the computation of heating demand are: (1) the digital cadas-
tre of other type of building information data are not as homogeneous as demographic data and building ty-
pologies, there are many building typologies available for Europe (Caputo, Costa, & Ferrari, 2013; Hrabovszky-
Horváth, Pálvölgyi, Csoknyai, & Talamon, 2013; Kragh & Wittchen, 2013; M. K. Singh, Mahapatra, & Teller,
2013; Dall’O’, Galante, & Torri, 2012; Dascalaki, Droutsa, Balaras, & Kontoyiannidis, 2011; Balaras et al., 2007),
as for its demographic data. (2) the complexity of data representing the building stock makes it difficult to make
projections into the future, Muñoz H., Vidyattama, and Tanton (2015b) present an application of a synthetic
building stock projected into the future with a simplified building geometry.

4. SIMULATION: USING GREGWT TO REWEIGHT THE MICROCENSUS

The aim of the GREGWT is to reweight a survey implementing method number 5 from A. Singh and Mohl
(1996). Tanton, Vidyattama, Nepal, and McNamara (2011) makes a detailed description of the algorithm and
its applications. Rahman, Harding, Tanton, and Liu (2013) presents an application of the GREGWT algo-
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rithm for the construction of synthetic population, the authors show a good performance of the method for
the estimation of household stress in Australia. The mathematical description of the GREGWT algorithm pre-
sented below is taken from Rahman, Harding, Tanton, and Shuangzhe (2010) and the algorithm description
from Muñoz H., Tanton, and Vidattama (2015).

Aim of the GREGWT algorithm is to find a set of new weightsw that can be used to match a surveyX to a set
of given benchmarks T so that T =

∑
wjXj (e.g. small area aggregates) by minimizing the weight difference

between these new weightsw and the sample design weights d from the survey. For the distanceD between de-
sign and estimated weights the GREGWT algorithm makes use of the truncated Chi-Squared distance function,
represented in Equation 1.

D =
1

2

∑
j

(wj − dj)2

dj
(1)

The equation needed to minimize the weight distance constraint to some given marginal totals of a geographical
area (T ) can be expressed as the Lagrangian function of the Chi-Squared function, as follows:

L =
1

2

∑
j

(wj − dj)2

dj
+
∑
k

λk

Tk −∑
j

wj,kXj,k

 (2)

By differentiating (1) with respect towj and applying the first order condition, we have:

δL

δwj
=

(
wj − dj
dj

)
−
∑
j

λjXj = 0 (3)

With this equation we can formulate an equation for the new weights. WhereX ′j =
∑
λkXj,k.

wj = dj + djX
′
j (4)

The new weights computed by the GREGWT algorithm are float values. Without any restrictions the algorithm
will produce negative weights, both implementations of the algorithm introduce boundary constrains as user
input. The user can define an upper and lower bound, if the algorithm computes weights outside these bounds
the weights will be truncated to the corresponding bounds. In this case the algorithm will iterate with the new
computed weights until a predefined convergence parameter is met or until there is no improvement in the
iteration.

The implementation of the GREGWT algorithm in the R language adds an extra calibration method for the
new estimated weights. This last process makes sure that the sum of the new weights is equal to the total pop-
ulation of the specific area. Equation 5 shows the alignment used to calibrate the resulting weights.

woi =
p× wi∑

wi
(5)
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Wherewo are the new calibrated weights, p is the population total andw are the computed new weights from
the GREGWT algorithm.

5. BENCHMARKING TO DIFFERENT AGGREGATION UNITS

The defined benchmarks for the reweighting of the survey are aggregated by different units: (1) Individuals, (2)
Families, and (3) Buildings (see Table 1 and Section 2). The used R implementation of GREGWT algorithm
is able to perform an integrated reweight. This is important for maintaining unit aggregations, f.ex. to main-
tain the family structure given by the survey. Nonetheless, this does not allow us to benchmark to different
aggregation units. Attempts to address this issue exist in the literature, Guo and Bhat (2007) benchmark an
initial survey to household characteristics and fit the result to individual benchmarks in the integerization2 of
the weights via a Monte Carlo process. This method allows to “benchmark” to both aggregation units. The dis-
advantage of this approach relies on its inegerization process, this process is only required for the construction
of agents at the cost of a decline of the algorithm performance. For the presented simulation we do not require
individual agents and therefore any form of integerization would be contra productive for the final result. For a
description of other similar approaches see Pritchard and Miller (2012) and Ma and Srinivasan (2015). Pritchard
and Miller (2012) propose a “Conditional Monte Carlo Synthesis Procedure” to fit the synthetic population to
both: household and individual benchmarks. Again this procedure assumes an integerization of the survey. As
described above we aim to develop a method that does not require an integerization step in order to avoid: (a)
a decline in the performance of the algorithm, (b) an explosion of computational time, and (c) introduction of
a stochastic element to a deterministic approach. Ma and Srinivasan (2015) developed another method to create
a synthetic population: “fitness-based synthesis” (FBS). The method presented by Ma and Srinivasan proposed
the computation of two fitness values expressing the adding and subtracting probability of individuals from the
random selected population from the reweighted population survey.

The GREGWT algorithm needs to transform the input matrixX (micro census) to a binary matrix, each 1 on
the matrix corresponds to an individual. This works well if we benchmark the survey to aggregates counting
individuals (e.g. number of individuals on age category 18 to 20) but fails if we try to benchmark to an aggregate
counting dwelling units (e.g. number of dwelling units with floor space of 60m2). We need to control for this
difference. With the available information of the input survey we can manipulate the binary matrix in order to
make the benchmarking to different aggregation units possible. For variables benchmarked to dwelling units
we divide them by household size, an individual with household size 3 will get a 1/3 instead of 1 in theX input
matrix. For all variables counting buildings we divide the values by the household size and number of dwelling
units, the same individual living in a building with 6 dwelling units will have a value of 1/3/6. This calibration
is formalized in Equation 6 and 7, whereHH is household size andDU is number of dwelling units.

Xdu
i = Xi ÷HHi (6)

Xbu
i = Xi ÷HHi ÷DUi (7)
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With this simple modification of the survey we are able to benchmark the input survey to three aggregation
levels. In theory this method allows us to benchmark to any number of aggregation units.

6. RESULTS: HEATING DEMAND

In this section we present the main results from the performed spatial microsimulation. The results show the
estimated heating demand for the German residential sector. First we present an internal validation of the spatial
microsimulation model and the resulting heating demand. The results are aggregated back to the geographical
areas in order to visualize them.

In order to internally validate the model we compare the results at the NUTS–3 level. We compare the output
results with the benchmarks used in the reweighting process. For the comparison we make use of the Total
Absolute Error (TAE) and the Percentage Absolute Error (PTAE), two measures of the model internal error.
The TAE is the absolute difference between the simulated T̂ and observed T benchmarks, the PTAE is an
extension of the TAE measure. The PTAE divides the computed TAE by the total population pop of the
geographical area i. The mathematical expressions of both measures are expressed below.

TAEi =
∑
i

∣∣∣Ti − T̂i∣∣∣ (8)

PTAEi = TAEi ÷ popi × 100 (9)

Figure 1: (a)Distribution of PTAE and (b) difference between estimated and simulated population

(a) (b)

The resulting PTAE values show a very low miss-allocation of individuals at this aggregation level. There are
only four areas with aPTAE value higher than 0.2% and 52 areas with a value higher than 0.1%. Figure 1 shows:
(a) the distribution of thePTAE values for all simulation areas; and (b) a scatter plot comparing the observed
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and simulated marginal sums. Figure 1b compares the simulated and observed small area benchmarks. The plot
shows a very good performance of the estimation. The mean TAE of the estimation of 182.05, this means that
on average 182.05 individuals are misrepresented on a small area. In order to compared the misrepresentation of
individuals per small are we divide this value by the total population on the corresponding area PTAE. The
meanPTAE value is of 0.04. This means that on average 0.04% of individuals are misrepresented on the small
areas.

The Internal validation of the model shows extremely good results, these results do not reflect on the accuracy of
the estimated heating demand. An external validation of the model is necessary in order to validate the estima-
tion of heating demand. This paper shows that the use of a spatial microsimulation model for the estimation of
heating demand at low aggregation levels is possible. The underlying model used for the estimation of heating
demand has not yet been validated, still the estimation is able to show plausible differences in heating demand
between small geographical areas. This method can be applied at a city level, differentiating the heating demand
at a neighbourhood level.

An external validation of the model is not possible because energy consumption data is not available at this
disaggregation level. Available energy consumption data exist at a higher aggregation level. This data does not
differentiate between consumption sectors, neither does it between primary and end-energy consumption. Our
model simulates residential end-heating demand. There is also a difference between heating demand and heating
consumption, our model does not consider efficiency rates of heating supply infrastructure. Further steps are
planned to make an external validation possible. The first step we envision towards a validation of estimated
heating demand is the integration of the non residential sector to the model. With an estimate of the non
residential sector we might be able to validate the sum of residential and non residential heating demand at a
higher aggregation level. We also plan to include efficiency rates of the underlying heating supply infrastructure
as well as the energy carrier used to supply the heating.

Figure 2: Mean heating consumption per dwelling unit

∗ for a 60 m2 dwelling unit

In order to show the results in a more meaningful way we divide the estimated total heating demand by the
number of dwelling units in each geographical area and by a constant (60) representing the average dwelling
unit size inm2 for Germany3. The resulting specific heating demand allows us to asses the performance of the
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Figure 3: Simulated heat demand for Germany at a NUTS-3 level as per capita heat demand in kWh/cap

Per capita
heat demand

[kWh/cap]

model. The distribution of this value for all simulation areas is plotted on Figure 2, the values and distribution
shown in this plot are consistent to known consumption values for the German building stock.

We present two figures showing the estimated heating demand at a NUTS-3 level. The first map (Figure 3)
shows the distribution of specific heating demand for the entire country. The second map shows the detail of
four specific areas of Germany. In addition to the estimated heating demand we plot urban agglomerations
retrieved from Landsat images, we make use of the GADM dataset containing this information (Hijmans et al.,
2014).

On the first map (see Figure 3) we can identify a differentiation between West- and East-Germany. The specific
heating consumption is higher in East-Germany. The specific heating consumption on East-Germany is higher
because the building stock on this part of Germany is older and less energy efficient. This regional differentia-
tion on heating demand shows that the presented model is sensitive to regional characteristics of the building
stock. There is a big difference between East and West regarding the heating supply infrastructure. The share
of households connected to a district heating network in East-Germany is much higher than in West-Germany.
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Figure 4: Simulated heat demand for selected regions of Germany
(a) Berlin (b)Hamburg

(c)Nordrhein Westfalen (d)Thüringen

Per capita heat demand

[kWh/cap]

Munoz, Dochev, Seller, Peters Constructing a Synthetic City for Estimating Spatially Disa�regated Heat Demand



International Journal ofMicrosimulation (2016) 9(3) 66-88 78

Also the construction quality of the building stock differs significantly between these regions. This clear differ-
entiation between small areas shows that the model is able to correctly capture the differences of the building
stock.

The second map (Figure 4), showing a detail of the distribution of heating demand for the two largest cities in
Germany: (a) Berlin and its surroundings, (b) Hamburg and its surroundings and two urban agglomerations:
(c) the south-east part of North Rhine-Westphalia “Nordrhein Westfalen” and (d) Thuringia “Thüringen”,
a federal state of East-Germany. In the case of the German cities, Berlin and Hamburg, the official NUTS–3
level is equivalent to the NUTS–2 and NUTS–1 level. Both areas have a disproportional large population size
compared to all the other geographical areas. Statistics at a lower aggregation level are available for both cities
and a second reweighting algorithm could be perform for these two areas separately. In both cases we see that the
areas corresponding to the cities have a higher specific heating demand and the peripheries show a lower specific
heating demand, we find an explanation for this differentiation in the construction year of the corresponding
building stock. We expect to have an old building stock within the historical urban fabric of the cities, this part
of the city will be well within the corresponding geographical area. Both cities have outgrown the boundaries
of these geographical areas. The development of urban settlements at the periphery of the city, constructed
in more recent years, are constrained to newer building codes regulating the heating transmission losses of the
building shell and therefore consuming less heat.

We see a similar effect on the large urban agglomeration of North Rhine-Westphalia (see Figure 4c), the high
values of heating demand correspond to the original settlements in the region. These settlements have the oldest
building stock in the region. Large part of these settlements are under heritage protection, making the retrofit
of the buildings extremely expensive and difficult. We can’t see this differentiation on the East-German urban
agglomeration in the Thuringia state (see Figure 3d). The urban agglomeration is not as big as in North Rhine-
Westphalia and the urban and population growth hasn’t been as big as in other German regions. In the case
of North Rhine-Westphalia we see the opposite phenomena in which more rural areas in the periphery have
higher consumption values.

The results presented in this paper show that an estimation of heating demand at this level of aggregation with
relative little input data is possible. Future developments of the models aim to integrate projections of the
heating demand consumption at the same area of aggregation. A theoretical background to perform a pro-
jection of heating demand with a spatial microsimulation model exists (Muñoz H., Vidyattama, & Tanton,
2015b). Muñoz H., Vidyattama, and Tanton (2015b) project the heating demand at a low aggregation level for
the city of Hamburg using a spatial microsimulation model. Recent developments show an alternative method
to project heating demand by simulating retrofits through the manipulation of the input weights of the micro
census (Muñoz H., Tanton, & Vidattama, 2015). This method presents a clear advantage while simulating and
projecting heating demand for the entire country at a low level of aggregation because we do not have to make
assumptions for the projection of retrofit levels at a low level of aggregation. A possible implementation of this
method is to align the initial weight distribution to proposed policies implemented at a federal level. In this
scenario the aggregated retrofit rates are defined at a federal level and the allocation of these retrofits could be
simulated as function of demographic characteristics at a lower geographical level.
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7. NEXT STEPS: INTEGRATED REWEIGHTING

The next envisioned step is to group the synthetic individuals into: (a) households and (b) into buildings. The
advantage of grouping individuals into single buildings are: (1) the ability to represent energy consumption at
a building level and (2) the possibility to geo-reference these buildings at a finer spatial resolution.

One of the applications for this synthetic data is the dimensioning and planning of decentralized energy supply
systems. In order to make data usable for this application we need to represent energy demand at a finer spatial
resolution. We may achieve this by obtaining aggregated benchmarks at a finer spatial resolution, this may not
be possible due to data protection concerns. For this reason we want to develop new methods to further disag-
gregate heating consumption values. For this disaggregation we see two possible paths, the first step for both
paths is the grouping of individual data into buildings.

The first approach makes use of the digital cadastre. The problem of this method is that a digital cadastre may
not always be able for the desire area, this is specially true for rural areas. The second approach makes use of
satellite images for the computation of spatial probability distributions of relevant building parameters (e.g.
density, construction year, etc.) and stochastically allocated buildings to build up areas based on the computed
spatial probabilities. The advantage of this method is that satellite images are available for the entire world,
making the transferability of the method higher.

With a more efficient building stock in place the roll of user-behaviour will take a dominant place in the es-
timation of heating demand (Hong, D’Oca, Turner, & Taylor-Lange, 2015). The presented method already
solves a common problem of urban models aimed at the estimation of residential heating demand with an ex-
plicit consideration of human behaviour, this is the allocation of families to the building stock. Muñoz H. and
Peters (2014) use a spatial microsimulation model to describe households and the building characteristics they
reside on for the estimation of heating demand varying user related parameters on the model according to the
demographics of the user. A more elaborated approach is presented by Muñoz H. (2014), in this paper the au-
thor enriches the German micro census with a time-use survey for the generation of household schedules, these
schedules are used as input in a thermal simulation model.

8. CONCLUSIONS: CREATING RICH DATA-SETS FOR THE URBAN SIMULA-

TION COMMUNITY

The presented method describes a process to represent core characteristics of the building stock in an abstract
fashion without fully describing, neither the real building geometry not an accurate location of the individual
buildings. We make use of a new R library (Muñoz H., Vidyattama, & Tanton, 2015a) for the reweighting of
the German micro census survey (2010) to small geographical areas, corresponding to the European NUTS-
3 level. Available aggregated data regarding demographic information as well as information on the building
stock are available at this level from the last German census (2011). In order estimate heat demand at a micro
level we classify each individual in the micro census to a building type. We make use of a well established building
typology for this classification (Loga et al., 2011). Because we know the dwelling unit size of every individual in
the micro census we are able to transform the specific heat demand provided by the building typology into
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an absolute value, we control this value by household size, dividing the absolute estimate heat demand by the
household size of each individual.

We make use of an innovative feature of the R library which allows us to benchmark the micro census to three
different levels of aggregation: (1) individuals, (2) households and (3) building units. Preliminary results from
the simulation are presented as maps at the NUTS-3 level. On these results we are able to identify a distinction
between East and West Germany as well as a distinction between historical urban agglomerations, with a high
heat demand, and new developments in the suburbs, with a more moderate heat demand. We conclude this
paper by offering the reader a prospective on the challenges ahead and the potential of the application of this
method for other kind of urban related phenomena.

A construction of synthetic cities by means of a spatial microsimulation model seems promising, the generation
of such a rich data-set with a relative low amount of input data is extremely useful, specially for regions without
detailed information about their building stock. In addition to a simplified representation of the building stock
this model connects the households populating the building stock, increasing the usability of this synthetic
data to an entire new community, we are specially interested in the emerging community exploring the nexus
between health and indoor environment of the building stock.
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stand: Datenerhebung zur energetischen qualität und zu den modernisierungstrends im deutschen
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ANNEX

Table 3: Categories of benchmarks from the 2011 Census and categories
of the micro census 2010

MC Code [S] Code [B] Categories

EF44 0–99 (integers)
ALTER 01JS∗ (1) Under 18, (2) 18–29, (3) 30–49, (4) 50–64,

(5) 65 and over,

S1 =
∑17

i=0 Si; S2 =
∑29

i=18 Si; S3 =
∑49

i=30 Si; S4 =
∑64

i=50 Si; S5 =
∑n

i=65 Si

EF49 (1) Single, (2) Married, (3) Widowed, (4) Di-
vorced, (5) Party to a civil union, (6) Civil partner
deceased, (7) Civil union annulled

FAMSTND AUSF (1) Single, (2) Married, (3) Widowed, (4) Di-
vorced, (5) Party to a civil union, (6) Civil partner
deceased, (7) Civil union annulled, (8) No data

B
′
i = Bi + 1 if rand() < Bi ÷

∑7
i=1Bi ∀i = 1 . . . 7 until

∑8
i=1Bi =

∑7
i=1B

′
i

EF46 (1) Male, (2) Female
GESCHLECHT (1) Male, (2) Female

EF20 1–62 (integers)
HHGROESS KLASS (1) 1 person, (2) 2 persons, (3) 3 persons, (4) 4 per-

sons, (5) 5 persons, (6) 6 or more people

S
′
6 =

62∑
i=6

Si

EF368 (1) Only German, (2) German and a second citi-
zenship, (3) Abroad

STAATSANGE KURZ (1) Germany, (2) Abroad

S
′
1 = S1 + S2; S′2 = S3

EF492 (-1/-5) not applicable
...

...
...
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Table 3: (continued. . . )

MC Code [S] Code [B] Categories

WOHNFLAECHE 20S (1) Under 40, (2) 40–59, (3) 60–79, (4) 80–99,
(5) 100–119, (6) 120–139, (7) 140–159, (8) 160–179,
(9) 180–199, (10) 200 and more

EF494 (1) Pre–1919, (2) 1919–1948, (3) 1949–1978,
(4) 1979–1986, (5) 1987–1990, (6) 1991–
2000, (7) 2001–2004, (8) 2005–2008,
(9) 2009 and later, (99) no response, (-1/-
5) not applicable

BAUJAHR MZ (1) Pre–1919, (2) 1919–1948, (3) 1949–1978,
(4) 1979–1986, (5) 1987–1990, (6) 1991–1995,
(7) 1996–2000, (8) 2001–2004, (9) 2005–2008,
(10) 2009 and later

B
′
6 = B6 +B7

EF635 (1) 1 dwelling, (2) 2 dwellings, (3) 3 dwellings,
(4) 4 dwellings, (5) 5 dwellings,
(6) 6 dwellings, (7) 7–12 dwellings, (8) 13–20,
(9) 21 or more dwellings, (-1/-5) not applicable

ZAHLWOHNGN HHG (1) 1 dwelling, (2) 2 dwellings, (3) 3 — 6 dwellings,
(4) 7 — 12 dwellings, (5) 13 or more dwellings

S
′
3 = S3 + S4 + S5 + S6

S
′
4 = S7

S
′
5 = S8 + S9

∗See Table 1 for a description of the code names
∗∗Sum is not equal to total population, an extra category is added to match the total population
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Table 4: Defined rules to classify individuals into building typologies

BJA # DU SQM BTYP

bja = 1 du = 1 sqm < 600 Btyp03
bja = 1 du > 1 sqm < 600 Btyp04
bja = 1 du > 1 4000 < sqm > 600 Btyp05
bja = 1 du > 1 10000 < sqm < 4000 Btyp06

bja = 2 du = 1 sqm < 600 Btyp07
bja = 2 du > 1 sqm < 600 Btyp08
bja = 2 du > 1 4000 < sqm > 600 Btyp09
bja = 2 du > 1 10000 < sqm < 4000 Btyp10

bja = 3 du = 1 sqm < 600 Btyp15
bja = 3 du > 1 sqm < 600 Btyp16
bja = 3 du > 1 4000 < sqm > 600 Btyp17
bja = 3 du > 1 10000 < sqm < 4000 Btyp18
bja = 3 du > 1 sqm > 10000 Btyp19

bja = 4 du = 1 sqm < 600 Btyp25
bja = 4 du > 1 sqm < 600 Btyp26
bja = 4 du > 1 4000 < sqm > 600 Btyp27

bja = 5 du = 1 sqm < 600 Btyp28
bja = 5 du > 1 sqm < 600 Btyp29
bja = 5 du > 1 4000 < sqm > 600 Btyp30

bja = 6 du = 1 sqm < 600 Btyp31
bja = 6 du > 1 sqm < 600 Btyp32
bja = 6 du > 1 4000 < sqm > 600 Btyp33

bja = 7 du = 1 sqm < 600 Btyp34
bja = 7 du > 1 sqm < 600 Btyp35
bja = 7 du > 1 4000 < sqm > 600 Btyp36
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1http://ec.europa.eu/eurostat/web/nuts/overview
2 This term is used by the spatial microsimulation community to described the process of converting resulting fraction weights to

integer weights.
371,5 m2 (2013 west Germany) & 63.4 m2 (2013 east Germany) from: Income and Consumption survey “Einkommens- und Ver-

brauchsstichprobe” (EVS) as quoted in: “Haushalte zur Miete und im Wohneigentum nach Anteilen und Wohnfläche in den Gebi-
etsständen am 1.1.” destatis.de
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