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ABSTRACT: This review discusses the evolution of microsimulation models in health over the 

past three decades. We focus on three aspects of health microsimulation. First, we describe the 

origins and applications of health microsimulation, including how early research challenged early 

methodologies and led to the development of more rigorous models. We describe limitations of 

early means-based models and how more detailed methods, which are based on health-specific 

input data, overcame many of the early data shortfalls and assumptions. Second, we discuss the 

global expansion of applications of microsimulation to health over the last ten years. Many health 

microsimulation models have focussed on health expenditure, the ageing population, diabetes, 

mortality modelling, and spatial models. Health models over the past few decades have expanded 

to many countries including Canada, Africa, the United States, the UK, Sweden, the Netherlands, 

New Zealand and Australia. Finally, we describe future developments, including emerging research 

fields for microsimulation and health and how the early development of health microsimulation 

models provides important lessons for emerging applications. These include the emerging field of 

genomics and precision medicine, and the diagnosis and treatment of childhood cancers and rare 

diseases. We suggest research directions, including the need for good data to avoid model errors, 

and highlight some pitfalls to avoid. 

 

KEYWORDS: HEALTH ECONOMICS, SPATIAL MODELLING, CANCER 

MICROSIMULATION, PRECISION MEDICINE  
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1 INTRODUCTION 

Microsimulation models can be used to address a wide range of research questions, including 

simulating life histories to estimate the effects of interventions or policies at a population scale, or 

test the impact of health policy on a population (Brown, 2011; Rutter, Zaslavsky, & Feuer, 2011). 

Increased demand by policy makers for detailed projections of long-term health systems, combined 

with new research paradigms focussing on individuals in addition to improved computing power 

and data availability means microsimulation has been experiencing an expansion in use. Static 

microsimulation models are well established, and dynamic microsimulation models are increasingly 

being used to inform health policy (Spielauer, 2011). Previous reviews have focussed on how 

microsimulation may inform health policy to 2010 (Rutter et al., 2011), and more general 

applications of microsimulation to the field of social sciences (Spielauer, 2011). In contrast, this 

review focuses on the history of health microsimulation, from 1970 onwards, specific health model 

types and applications from 2007 to 2017, and future research directions, including genomic 

medicine, and lessons learned which we may apply in future microsimulation. 

In this paper, we describe the overall trends in health microsimulation models starting from when 

microsimulation was applied in health research for the first time in the 1970s to the recent time, 

discussing the early challenges that were overcome to develop robust models and the modern 

applications in health modelling. We then discuss the future challenges and key research directions, 

and what can be learned from the early development of health applications of microsimulation to 

advance current developments of the field and overcome significant pitfalls.  

In order to find the scientific literature on the application of microsimulation in health research, 

we used “microsimulation” as a keyword search in PubMed1, a search engine with access to more 

than 28 million citations for biomedical literature from MEDLINE, life science journals, and online 

books. PubMed is a search engine for medical literature and therefore using ‘health’ or ‘medical’ as 

a search term was deemed unnecessary. The search returned 788 articles and the first article as 

indexed by PubMed was published in 1972. We draw key examples from this literature to describe 

the developments of microsimulation applied to health from the 1970s and 1980s to the present. 
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2 ORIGINS AND APPLICATIONS OF HEALTH MICROSIMULATION 

2.1 First application of microsimulation of health 

It took almost 15 years, since the development of the first microsimulation model in 1957 (Orcutt, 

1957), to apply microsimulation modelling in health research. Early health microsimulation models 

from the 1970s imputed Egyptian data (Khalifa, 1972), while using a US dynamic microsimulation 

model POPREP to study the effects of five different methods of family planning on the rate of 

conception (Mustafa, 1973).  

There were only a few health microsimulation models reported in the 1970s, although there was a 

rapid increase in the number of studies using microsimulation models in health between 1980 and 

1990, with applications becoming remarkably diverse (Table 1). There were about 15 health 

microsimulation models reported between 1975 and 1990 (Figure 1). These early models were 

generally static models rather than dynamic models, unlike the Egyptian population models from 

the 1970s.2 Models from 1975 to 1990 mostly focussed on topics such as fertility (Roy, 1984; 

Santow, 1978), breastfeeding and fertility (Kono, Hirosima, Watanabe, Takahashi, & Kaneko, 

1983) health insurance provided by employers (Chernick, Holmer, & Weinberg, 1987; Rossiter & 

Wilensky, 1978), cancer screening (Parkin, 1985) and the screening of other diseases (Habbema, 

van Oortmarssen, Lubbe, & van der Maas, 1985). Other types of models developed included 

studies on the transmission and treatment of vector-borne diseases, based on the life history of 

humans and the vector, such as a flying insect for river blindness disease (onchocerciasis) (Plaisier, 

van Oortmarssen, Habbema, Remme, & Alley, 1990). Another model from the 1970s tested the 

impact of different health policies by simulating the behaviour of individuals and institutions (Yett, 

Drabek, Intriligator, & Kimbell, 1975). Many of these early models used national census data, which 

were generally the most readily available data in the 1970s to 80s, combined with some survey data 

such as breast-feeding and fertility surveys (Table 1). In addition, some disease-specific models 

were based on more health-specific published clinical data on disease progression, such as those 

on cervical carcinoma (Parkin, 1985). 
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Table 1: A selection of microsimulation models of health: 1970-1989. 

Model, country (source, year) Aims/objectives Data sources Sample sizes 

POPSIM, Egypt (Khalifa, 1972) Study the effects of various forces, 
for instance family planning, on the 
Egyptian population. The model 
generates vital health events and 
life histories for each individual in 
the computerized population. 

Longitudinal or historical data. Entire population. 

HRRC, USA, (Yett et al., 1975)  Examine impacts of health policies 
on behaviour of individuals and 
institutions comprising the health 
care system. 

Local, State and Federal Hospital 
data, Census data, Annual Survey 
of Hospitals. 

Up to 2,170,000. 

USA, (Rossiter & Wilensky, 1978)  Suggest empirical health models 
for estimating elasticity of demand 
and supply for physician and 
medical services. 

National Medical Care Centre 
Expenditure Survey (NMCES) 
data and National Centre for 
Health Statistics. 

Not stated. 

West Nigeria, (Santow, 1978)  Assess fertility of the Yoruba of 
Western Nigeria and changes in the 
durations of lactation and marital 
sexual abstinence. 

Demographic surveys, fertility 
survey of Ibadan (CAFN1).  

Not available. 

UN Population Division Model, 
Japan (Kono et al., 1983)  

Simulate Japanese fertility, using 
conception, mortality and 
nuptiality, affecting the level and 
trend of fertility.  

Field survey on fertility. Japanese 
population data from 1945 to 
1982. 

3,000 married couples. 

Converse, India (Roy, 1984) Examine sterilization in India and 
makes demographic analysis of the 
performance. 

Not stated. Not stated. 
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England and Wales, (Parkin, 1985)  Reproduce demographic events in 
a female population over a 30 year 
period, and superimposes the 
natural history of cervical 
carcinoma, using data derived from 
published studies. 

1961 Census data, England and 
Wales from 1961 to 1990. 
Conditional probabilities of 
childbirth at a given age, from 
literature.  

Arbitrary size, with the 
demographic makeup of England 
and Wales. 

USA, (Chernick et al., 1987)  Determine the links between tax 
subsidies and health insurance, 
using elasticity’s of demand for 
health insurance and medical 
services in a static microsimulation 
model. 

March 1980, Current Population 
Survey data, including health 
insurance information. Battelle 
Employment-Belated Health 
Benefits Survey, 1977-78. 

USA Population of 1979. 

USA, STATS, (Wixon, Bridges, & 
Pattison, 1987)  

Inform health policy through a 
national survey of households to 
calculate taxes or benefits for 
thousands of persons or families, 
case by case. 

National Current Population 
Survey data. 
 

More than 100,000 people. 
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Figure 1: Exponential growth in the number of publications relating to application of microsimulation in health research by decade.  

 

Source: PubMed, keyword ‘Microsimulation’. 

 

Testing the robustness and assumptions of underlying models has always been a key step in the 

development of microsimulation models, which were commonly undertaken by comparing 

predictions against observed results (Habbema et al., 1985; Parkin, 1985). The success in 

developing early models in this period led to more sophisticated health models. With the realisation 

of their usefulness in health policy settings and with more available data, the number of 

microsimulation models in health started to increase (Figure 1). 

2.2 Towards greater rigor: challenges overcome in the 1990s 

The 1990s was a period of rapid expansion and a move to robust purpose-built health models with 

many focussing on health benefits and expenditure. However, the primary method was a “means-

based approach”, also known as a cell-based method, within an existing static microsimulation 

model developed for other purposes (National Research Council, 1991). This was a serious and 

pervasive limitation of many of the models commonly used in this period. This is not to say that 

there were no other types of models developed during this period, for example, Wolfson reported 

on the development of POHEM, a longitudinal model of health and disease (Wolfson, 1994). 

However, the wider field had yet to develop and accept a rigorous approach such as that typically 

used for tax-benefit models of that era. In this section we focus on the challenges of this period as 

it serves as an important illustration of how new developments can entrench simplistic and 

erroneous methods and the importance of continued development of the field, with lessons that 

are critical to the continued development of health microsimulation in the 21st century (see Section 

4). Typically means-based models relied on average health service usage data for particular 

population sub-groups and data on the average subsidy per service, to derive a value for benefits-
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in-kind for each individual unit in the model. Some of the means-based models are illustrated in 

(Australian Bureau of Statistics, 1987, 1992; Central Statistics Office, 1992; Economic Planning 

and Advisory Committee, 1987; Evandrou, Falkingham, Grand, & Winter, 1992; Ann Harding, 

1984; Johnson, Manning, & Hellwig, 1995; Statistics New Zealand, 1990). The failure of the means-

based approach to take into account many important predictive variables led some authors to 

suggest that they were likely to produce questionable distributional results (Cameron & Wolfson, 

1994; Evandrou, Falkingham, Hills, & Le Grand, 1992). In fact, it became common to preface an 

analysis of the distribution of health benefits from these models with a disclaimer, such as that 

given by Statistics New Zealand (1990) who stated that their means-based simulation was a “very 

approximate” method, and that “different assumptions could produce quite different results”. It 

was suggested that the distribution of health benefits was in fact more progressive, that is, skewed 

towards the poor, than the means-based models had suggested (Johnson et al., 1995; Schofield, 

1998a, 1998b). 

Another major limitation of means-based models was the failure to identify that health service 

usages vary markedly between persons within the (usually large) mean groupings, leading to errors. 

Cameron and Wolfson (1994) questioned the method of assigning an equal benefit to all individuals 

within the same group (usually defined by age group and sex), whether or not the benefits are 

actually used. Johnson et al. (1995) demonstrated in their simulation of health benefits under the 

means-based approach that the value of the expenditure will be spread across everyone who is 

eligible for free medical treatment when only a small proportion of people will actually use the 

services, but those few will derive a much greater value from it. Consequently, health expenditures 

were under-estimated for people who were high users of the public health system, but over-

estimated for low users. 

A number of authors challenged the means-based models and developed purpose-built health 

microsimulation models with more detailed methods during the 1990s. Cameron and Wolfson 

(1994) from Statistics Canada developed an alternative model to their means-based model which 

used regression equations to impute the use of hospital and physician services. Cameron and 

Wolfson (1994) reported that the ‘detailed method’ produced a distribution of health benefits that 

was more progressive than their means-based model.  

Schofield (1998a, 1998b) developed two detailed microsimulation models using individual unit 

record data from the Australian National Health Survey as a base population and imputed health 

expenditure at the individual level based on the cost and subsidy of each service used in these 
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models. When results from both models were compared, the detailed approach was found to be 

markedly more pro-poor than the comparator means-based models in modelling the previously 

published results from earlier means based models in terms of the distribution of expenditure on 

the Pharmaceutical Benefits Scheme (PBS) and of hospital expenditure. This work laid the 

foundations for future lifetime analysis of health expenditure (Harding, Percival, Schofield, & 

Walker, 2002). 

Similarly, the United Kingdom’s Central Statistical Office had developed an alternative more 

detailed health model using the General Household Survey which included information on the use 

of health services. The outputs of this model were then compared to their means-based model 

which imputed health service use. The authors reported that the detailed health model produced 

results which were less progressive (that is, less skewed towards the poor) than the means-based 

model (Evandrou, Falkingham, Grand, et al., 1992; Evandrou, Falkingham, Hills, et al., 1992). This 

was in direct contrast to the findings of the Australian and Canadian studies which found that their 

simulated distribution of health benefits was more progressive (Evandrou, Falkingham, Grand, et 

al., 1992), suggesting that more rigorous approaches might have a different impact on the results 

for different countries. 

 

3 MODERN APPLICATIONS OF MICROSIMULATION IN HEALTH 

MODELLING – 2007 TO PRESENT 

Microsimulation is a field with a strong international community, with colleagues sharing their 

knowledge and skills since its inception. This is reflected in the spread of the applications of 

microsimulation in health, from countries with the most intense microsimulation development 

(Canada, Australia, New Zealand, the UK, the US and Western European countries) to every 

populated continent including Africa, Asia and South America (Figure 2). 
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Figure 2: Global distribution of publications on microsimulation between 1972 and 2017, from a medical database, PubMed.  

 

Source: PubMed, keyword ‘Microsimulation. 

 

There has been a rapid proliferation of different types of applications of microsimulation modelling 

to health (Appendix A.1), with an ever-increasing diversity of use. This is demonstrated by changes 

in Medical Subject Heading (MeSH) codes frequently used in microsimulation and health papers, 

sourced from our literature search in PubMed (Figure 3). Some of the key areas of health 

microsimulation development are summarised below.  
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Figure 3: A figurative representation of the MeSH (Medical Subject Headings) words used for ‘microsimulation’ papers from (a) 1990 to 1999, (b) 
2000 to 2009, and (c) 2010 to 2018. The size of each phrase represents the relative weight of the number of times each phrase is used. 

 
Source: PubMed, keyword ‘Microsimulation. 
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Health microsimulation models often now use National Health Surveys, Census data, disease 

registry data and sometimes other published data and primary data collections from clinical studies 

(see Appendix A.1). We note the importance of the move to individual record health data in Section 

2.2 on means-based models.  

3.1 Health expenditure and health policy 

This has traditionally been the area where health microsimulation models are most widely used. In 

the last ten years, health expenditure has continued to grow in microsimulation research, 

particularly in relation to evaluating the impact of changes in health policy before implementing 

the changes. Microsimulation is increasingly being used to simulate health policy, as technology 

advances and also increasingly complex policy issues require new approaches (Brown, 2011; Lay-

Yee & Cotterell, 2015). The increased use of microsimulation in health reflects the size and fast 

growth of national health expenditures, where the intricacy of the diseases and impacts of the health 

policies are inter-related (Majstorovic, 2015; Schofield & Rothman, 2007). Ageing populations and 

increasingly sophisticated drugs and technology have led to the development of microsimulation 

models that are recognised as effective policy tools for managing national health expenditures 

(Subramanian, Bobashev, Morris, & Hoover, 2017).  

3.2 Ageing population and carers 

With the global population ageing, both the number of people with chronic disease and the need 

for carers are increasing (Schneider & Kleindienst, 2016). Models, such as SHARE in Europe 

(Schneider & Kleindienst, 2016), have used microsimulation to estimate the costs of caring for the 

ageing population, in upcoming decades. This has led to the use of health-specific-survey data to 

develop models to identify and prioritise chronic diseases that require greater carer support, for 

cross-portfolio models. Examples of current models of the ageing population and their carers 

include SESIM in Europe (Flood, 2008), building on early development in this field including, the 

Brookings/ICFLong Term Care Financing Model, CORSIM, and DYNASIM in US (Caldwell, 

1997; Kennell, Alecxih, Wiener, & Hanley, 1992; Orcutt, Wertheimer, & Caldwell, 1976). 

Microsimulation models have also been used to predict the need for aged care services (Sharyn 

Lymer, Brown, Harding, & Yap, 2009) to quantify the impact of specific diseases such as diabetes 

(Schofield et al., 2017) and dementia (Singh, Hussain, Khan, Irwin, & Foskey, 2014), which are 

more prevalent in the older population, and on future costs to individuals and government. 
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3.3 Cancers 

Cancer microsimulation models have been developed over the last decade, with microsimulation 

gaining popularity in cancer research, and with policy-makers. This is particularly due to their ability 

to simulate chronic disease and the impact of screening and/or interventions under different 

scenarios. Many successful microsimulation studies have been used to estimate the cost-

effectiveness of cancer diagnosis and treatment. 

Numerous cancer models have been developed to simulate the impacts of cancer screening and 

treatments in Canada, the USA and Netherlands. The Cancer Risk Management Model (CRMM), 

developed in 2008, enables users to simulate the effects of interventions on cancer in Canada 

(Evans et al., 2013; Popadiuk et al., 2016). CRMM has been used in multiple cancer simulations in 

recent years. Cancers simulations which were built on CRMM include cervical cancer (Popadiuk et 

al., 2016), lung cancer (Goffin et al., 2015; Louie, Rodrigues, Palma, & Senan, 2014), and colorectal 

cancer (Coldman et al., 2015). Additionally, the cervical cancer and Human Papillomavirus (HPV) 

transmission models (Miller et al., 2015) of CRMM were used to study the health outcomes for 

screening of cervical cancer.  

MISCAN was developed in the Netherlands and USA for screening cancer. It was initially used for 

cervical and breast cancer screening (de Koning, Boer, Warmerdam, Beemsterboer, & van der 

Maas, 1995; van Oortmarssen & Habbema, 1991), but has since been applied to colorectal, lung, 

and prostate cancer (Draisma et al., 2003; Schultz, Boer, & de Koning, 2012; Vogelaar et al., 2006). 

The model simulated the natural history of the disease from collected population clinical datasets, 

and hypothetical life histories formed the base population of the model (Institute of Medicine & 

National Research Council, 2005). Recently, microsimulation of screening for lung cancer was 

modelled in Canada to determine the most cost-efficient screening strategies (ten Haaf et al., 2017).  

With the discovery of high penetrance genes related to breast cancer, there has been a need for 

evidence around the long-term cost-effectiveness of screening protocols that can be provided by 

microsimulation. Models generally have two key components: disease progression modules 

including treatment and screening modules. Most models have been developed in the USA and 

UK, including (Lee et al., 2008) who considered three screening options around MRI and 

mammography for BRCA positive women. Other breast cancer models include Obdeijn, 

Heijnsdijk, Hunink, Tilanus-Linthorst, and de Koning (2016) who used MISCAN to consider the 

cost-effectiveness of mammography in BRCA positive women and Eccleston et al. (2017) who 

considered the cost-effectiveness of BRCA testing of women with ovarian cancer and then cascade 
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testing of their female family members. Additionally, modelling of population screening for specific 

ethnic sub-populations which have founder mutations have been conducted in populations of 

Ashkenazi Jewish Women (Grann et al., 1999).  

3.4 Diabetes 

Microsimulation of complex diseases such as diabetes, considers the prevalence, interactions of co-

morbidities and risk factors, disease progression, the effectiveness of interventions and the cost-

effectiveness of interventions. Microsimulation has been used in the modelling of diabetes, 

cardiovascular disease and obesity, either as the primary focus or as part of a chronic disease system 

(Morrissey, Espuny, Williamson, & Higgins, 2016), with selected diabetes models shown in 

Appendix Table A.1.  

There has been a strong collaboration through the Mount Hood Diabetes Challenge Network, 

which has seen the development of numerous diabetes (both type 1 and 2) focused simulation 

models. The original diabetes simulation model was developed to predict the vascular 

complications of NIDDM in a cohort representative of the incident cases of diabetes in the US 

and allowed the assessment of preventative interventions (Eastman et al., 1997). In 2017, this group 

reported 12 models predominately developed for the US and UK including: Cardiff (McEwan, 

Peters, Bergenheim, & Currie, 2006), the UKPDS Outcomes Model (Clarke et al., 2004; Hayes, 

Leal, Gray, Holman, & Clarke, 2013); ECHO-T2DM (Willis, Asseburg, & He, 2013); IMS-CORE 

Diabetes Model (Palmera et al., 2004); MICADO (van der Heijden et al., 2015) and the Michigan 

Model for Diabetes (Ye, Brandle, Brown, & Herman, 2015; Zhou et al., 2005). These types of 

models have been used for assessments of the long-term cost-effectiveness across a variety of 

intervention types, for example (Gao, Zhao, & Li, 2012; van Haalen et al., 2014).  

In Australia, there have been several diabetes models developed (Walker, Colagiuri, & Mclennan, 

2003), which simulate diabetes progression and the costs of different prevention, screening or 

treatment scenarios (Bertram, Lim, Barendregt, & Vos, 2010; Walker & Colagiuri, 2011). A 

complex chronic-disease model system, HealthAgeingMod, has been developed which includes 

both diabetes and cardiovascular disease (CVD) (Walker & Colagiuri, 2011). The 

HealthAgeingMod complex chronic disease framework was then used to develop NCDMod with 

greater emphasis on modelling of associated risk factors, in particular, obesity (Lymer, Schofield, 

Lee, & Colagiuri, 2016). In Australia, there have also been models developed capturing the financial 

consequences and impacts of diabetes (Schofield et al., 2010).  
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In Canada, there has been similar consideration of chronic disease with the Population Health 

Model (POHEM), used to project CVD to 2021 with diabetes modelled as a risk factor (Manuel et 

al., 2014). More recently, body mass index (BMI) predictive modules for both adults and children 

were included in POHEM to predict rates of overweight and obesity in the Canadian population 

(Hennessy et al., 2015; Hennessy, Garner, Flanagan, Wall, & Nadeau, 2017). With the growing 

prevalence of obesity, there has been a focus on models to project future obesity rates, and 

associated economic implications (Lymer & Brown, 2012; Su et al., 2015). These models are able 

to consider long-term implications of changes in public policy as well as the health implications of 

obesity. 

3.5 Mortality 

Microsimulation has been used to estimate the long-term productivity losses resulting from 

premature mortality, with selected mortality models presented in Appendix Table A.1 (Bradley et 

al., 2011; Carter, Schofield, & Shrestha, 2017; van Luijt, Heijnsdijk, & de Koning, 2017). A series 

of mortality studies from Australia were used to estimate lifetime income from Present Value of 

Life Income (PVLI) in 2003, and outcomes were then modelled to 2030 (Carter, Schofield, & 

Shrestha, 2016; Carter et al., 2017). There was a large national impact of premature deaths, with 

cancer and cardiovascular disease accounting for more than half the total PVLI impact. The impact 

was modelled across specific age, sex and cause of death categories. The studies suggested that 

interventions and policies which address and prevent premature mortality are likely to improve 

both health outcomes for individuals and economic outcomes for national governments (Carter et 

al., 2016, 2017). 

3.6 Spatial models 

Spatial microsimulation allows for the provision of population-specific planning and management, 

identification of health inequalities, and modelling the spatial aspects of disease and disease 

prevention (Rahman, 2017). These applications of microsimulation capture population dynamics 

and examine health policies (Schofield, Carter, & Edwards, 2014). Spatial microsimulation models 

have been used to determine specific attributes of small area statistics (Williamson, Birkin, & Rees, 

1998; Williamson, 2016), how a location influences the likelihood of a disease, or where health care 

provisions are best located (Rahman, 2017). Examples of spatial microsimulation are described in 

Appendix Table A.1. The obesity model SimObesity aims to understand the relationship between 

lifestyle and environmental risk factors in children and adults (Edwards & Clarke, 2009; Edwards, 

Clarke, Thomas, & Forman, 2011). Another spatial simulation model, SimAlba, is used in Scotland 
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to simulate distributions of variables at small areas, such as smoking, mental health, alcohol 

consumption and obesity (Campbell & Ballas, 2016). SimAlba uses Scottish Health Survey and 

Census data, and simulates the effects of different policy outcomes (Campbell & Ballas, 2016). 

Small-area models have also been used to model cardiovascular disease, diabetes and obesity 

prevalence (Morrissey et al., 2016).  

3.7 Transmission of disease 

Dynamic microsimulation models of health may be used to predict the trajectory of a disease 

(Schofield et al., 2014). Both chronic disease and infectious diseases have been modelled using 

dynamic microsimulation, to examine the impact of mitigation or prevention strategies on the 

spatial and temporal spread of disease (Li, O’Donoghue, & Dekkers, 2014). The impact of disease 

transmission for a range of conditions has been modelled: to determine the impact of vaccinations 

on human papillomavirus (Goldhaber-Fiebert et al., 2007), individual behavioural choices in HIV 

transmission (Cassels, Clark, & Morris, 2008) or closure of schools on influenza transmission 

(Sander et al., 2009), as well as the transmission of disease through (Degnan, Kaisar, & Schokkin, 

2009). 

3.8 Microsimulation and cost effectiveness of health interventions 

There have also been moves towards the use of microsimulation methods to evaluate the cost-

effectiveness of new interventions generally drawing evidence of effectiveness from randomised 

controlled trials or other study designs. This has tended to take the form of Markov models to 

undertake cost-effectiveness studies using microsimulation methods. Markov models are similar to 

cell-based models, both of which are based on aggregate data. These are often hybrid models, 

which do not always have the same amount of use of unit record data as typical microsimulation 

models, but rather, rely largely on aggregate data or synthetic populations, for instance 

Barnighausen & Bloom (2009). 

Where there are models developed in conjunction with an intervention study, such as a clinical trial 

which collects individual patient data, then there is scope for the model to contain most of the 

necessary data at the unit record level. These models have a distinct advantage over aggregate 

Markov models in that they can simulate a virtually unlimited number of health states, with the 

number of health states only limited by the number of states captured and the number of records 

in the primary individual-level data source. This potentially increases the reliability of the model as 

well as capturing distributional impacts, for instance Hiligsmann et al. (2009). The benefits of using 
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microsimulation for cost-effectiveness studies has been highlighted for its ability to handle large 

datasets and the potentially complex and a very large number of permutations of conditions, side 

effects and treatments within a study as well as for extrapolating outcomes beyond the period of 

follow up of patients during the trial (Vanness, Tosteson, Gabriel, & Melton, 2005; Weinstein, 

2006). There are currently a small number of cost-effectiveness studies using microsimulation of 

this purpose with one example being to evaluate the cost-effectiveness of memantine to treat 

Alzheimer’s disease patients receiving donepezil (Weycker et al., 2007).  

The application of microsimulation modelling to cost-effectiveness studies associated with clinical 

trials is a natural development of microsimulation models designed to simulate the progression of 

a disease and the related costs. Examples include the microsimulation models used by the US 

National Cancer Institute (http://cisnet.cancer.gov/) or the models used by NATSEM for type 2 

diabetes and its control in Australian populations (http://www.natsem.canberra.edu.au/) or 

NCDMod which simulates obesity and progression to diabetes and cardiovascular disease (Lymer 

et al., 2016). These models, when adapted to simulate the outcomes of clinical trials, have the 

capacity to appraise the impact (clinical, social and economic), of recommended prevention 

strategies or treatments before expensive, time-consuming real-world implementation. For 

example one study compared the cost-effectivenss of 12- and 52-week interventions in patients in 

a randomised control for weight-loss techniques and modelled these over a 25-year time period 

using microsimulation (Ahern et al., 2017). This development is consistent with the work of Sassi 

and Hurst (2008) who emphasise the need to assess the impact of any proposed interventions for 

prevention of these diseases empirically before implementation, with this process facilitated by the 

use of erudite tools due to the complex dynamics involved in disease aetiology. 

3.9 Cross portfolio models 

As health and health policy has become a more common application of microsimulation models, 

the sophistication and breadth of the purpose of these models has begun to increase. Indeed, 

purpose built health models are beginning to be used as a platform to link other data and models 

of taxes and benefits such as STINMOD (Percival, Abello, & Vu, 2007), or even for comparing 

federal policy implications of different presidential candidates, Donald Trump or Bernie Sanders, 

on mortality (Kim, 2017). Another example is Health&WealthMOD, an Australian 

microsimulation model, which links with one or two other microsimulation models (depending on 

the application) to capture the economic impacts of health and changes in health status across 

multiple government portfolios and the national economy, capturing impacts of health on income, 

http://cisnet.cancer.gov/
http://www.natsem.canberra.edu.au/
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savings, taxes, welfare and GDP (Schofield et al., 2009), with specific application to productivity 

and health conditions such as arthritis (Schofield et al., 2013). Other examples of cross-portfolio 

applications include the model of the health workforce effects of proposed school closures to 

manage pandemics (Lempel, Epstein, & Hammond, 2009), or measuring impacts of alcohol 

policies on injury prevention and productivity in Canada, the Czech Republic and Germany 

(Cecchini, Devaux, & Sassi, 2015).  

 

4 WHERE DO WE SEE HEALTH MICROSIMULATION GOING? - “BACK TO 

THE FUTURE” 

We started this review with the first studies using microsimulation to quantify effects of family 

planning in 1972-1973. Interestingly, family planning and some of the technical issues, such as the 

need for relevant health data related to that first model are important and very relevant again in 

2018 for the newest applications of microsimulation. Recent applications, including genomic 

testing and precision medicine, particularly need detailed high quality data to reflect the genetic 

diversity of the population, with important applications to family planning. Genomics is an 

emerging field of clinical medicine rapidly redefining our understanding of the cause of human 

disease (Council of Australian Governments, 2017; Lindor, Thibodeau, & Burke, 2017). Many 

disorders currently treated as a single condition, are in fact made up of very different disorders with 

different molecular causes, and thus require different treatments.  

Genomic medicine has been recognised as an important new health technology across the world 

(Felsenstein & Theodorescu, 2018; Vignot et al., 2018; Williamson et al., 2018). The remarkable 

steps forward from current practice which can be made with precision medicine were recognized 

by the House of Lords Science and Technology Committee in their report to British Parliament on 

Genomic Medicine (House of Lords Science and Technology Committee, 2009, p. 5):  

 

“Every so often a scientific advance offers new opportunities for making real advances in medical care. 

From the evidence given to this inquiry, we believe that the sequencing of the human genome, and the 

knowledge and technological advances that accompanied this landmark achievement, represent such an 

advance”. 

Further, the United Kingdom’s 100,000 Genomes Program, together with Genome England, aims 

to sequence genomes from 100,000 patients from the National Health Service, and that whole-



INTERNATIONAL JOURNAL OF MICROSIMULATION (2018) 11(1) 97-142  115 

SCHOFIELD, ZEPPEL, TAN, LYMER, CUNICH, SHRESTHA    A Brief, Global History of Microsimulation Models in Health: Past Applications, Lessons Learned 
and Future Directions 

genome sequencing will become routine clinical practice (Samuel & Farsides, 2018). Similarly, in 

March 2018, the Health Minister of Australia announced an investment of tens of millions of 

dollars, for preconception carrier screening for couples to assess the risk of having a child with a 

severe genetic disorder (Scott & Armitage, 2018). 

Genomics requires a form of modelling that can capture these individual genetic differences and 

responses to therapy - a purpose to which microsimulation is eminently suited. Conversely, the risk 

of using aggregate models of grouped diseases with crude averaged impacts as inputs can produce 

highly erroneous results, further confounded if based on assumptions rather than the quality of 

data microsimulation models typically reply upon (Doble, Schofield, Roscioli, & Mattick, 2016, 

2017). A diagnosis of many of these conditions also provides families with information important 

in family planning (Ghiossi, Goldberg, Haque, Lazarin, & Wong, 2018). Microsimulation may be 

used to model cost-effectiveness of techniques such as prenatal and pre-implantation genetic 

diagnosis.3 

4.1 Why we need good genomic medicine data 

It is important to note that, in order to produce robust, credible and accurate model results, we will 

need good quality genomic data (which often currently requires primary data collection given the 

current paucity of relevant data, inevitable for conditions which could not until very recently be 

diagnosed). This was a lesson previously learned in the 1990s during the move from means-based 

models that relied on aggregate health data imputed onto other models. These means-based models 

led to faulty conclusions. This prompted the development of purpose built health models, using 

specific health microdata. We have once again seen the types of errors that the earlier approaches 

produced in the emerging field of genomic medicine.  

For example, a study on precision medicine, and how it may impact global health, proposed that 

the identification of genomic variants in major complex diseases would lead to change of health-

related behaviours, resulting in 10-50% reduction in disease incidence (Dzau, Ginsburg, van Nuys, 

Agus, & Goldman, 2015). However, the aggregated assumptions in the study by Dzau et al. (2015), 

namely, that knowledge of a genetic condition would lead to marked behavioural change followed 

by an assumed large average reduction in the incidence of disease, have been shown to be 

unsupported by evidence (Doble et al., 2016). A Cochrane review (Marteau et al., 2010) showed 

that after receiving information about genetic risk, there was no evidence of incremental 

behavioural changes in patients. Thus, the assumptions in the Dzau et al. (2015) paper led to 

unfounded conclusions. For any modelling study to be robust, the input data, model assumptions 
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and model structure need to be relevant (McLay, Lay-Yee, Milne, & Davis, 2015), evidence-based, 

robust, timely and capture the distributional impacts. This example highlights the need for quality 

data to be used in relation to genomic testing and precision medicine and microsimulation. Notably, 

van Gestel et al. (2012) comment that a lack of high-quality data on costs and health outcomes is 

the major reason why there is no clear evidence of the value of personalized medicine in terms of 

cost-effectiveness, a conclusion similar to that of previous authors (von Randow, Davis, Lay-Yee, 

& Pearson, 2012). Once again, the need for high quality individual based micro-data is a critical 

issue for current developments in health applications of microsimulation.  

4.2 Genomics and precision medicine: the new frontier for microsimulation 

There are also rapidly developing uses of microsimulation in relation to cancer and genomic 

medicine to model colorectal cancer (Barzi, Sadeghi, Kattan, & Meropol, 2015), lung cancer (Han, 

Erdogan, Toumazis, Leung, & Plevritis, 2017; Sheehan, Criss, Gazelle, Pandharipande, & Kong, 

2017), melanoma (van der Meijde et al., 2016) and childhood cancer (see next paragraph). Rapid 

improvements in immunotherapy treatment of melanoma provide promising, targeted treatment 

which may be used when a specific mutation is observed in patients (Holay, Kim, Lee, & Gujar, 

2017) with improvements in precision medicine leading to the development of clinical trials 

(Tannock & Hickman, 2016). One recent study from the Netherlands used microsimulation to 

simulate the cost-effectiveness of new treatments of melanoma (van der Meijde et al., 2016). The 

authors used microsimulation to quantify the cost-effectiveness of individualized cancer care, based 

on the progress of melanoma, using a description of underlying tumour growth, as well as 

interactions with diagnostics, treatments and surveillance (van der Meijde et al., 2016). 

An emerging area of precision medicine is the improved diagnosis and treatment of childhood 

cancers (Worst et al., 2016). The low numbers of childhood cancer patients mean that cost-

effectiveness studies of precision medicine in childhood cancer, compared with adult cancer, are 

rare. However, improvements in sequencing techniques mean that precision medicine in childhood 

cancer is rapidly advancing (Worst et al., 2016). Although the costs of childhood cancer have been 

quantified (Heath, Lintuuran, Rigguto, Tikotlian, & McCarthy, 2006; Wakefield, McLoone, Evans, 

Ellis, & Cohn, 2014), the costs and benefits of precision medicine have not yet been modelled. 

Very few studies (none to our knowledge) have analysed the cost-effectiveness of standardised 

treatment of childhood cancer, let alone compared precision medicine with standardised treatment, 

with the costs of precision medicine, using microsimulation, in fact there are few cost-effectiveness 

studies of the next generation sequencing in cancer (Tan, Shrestha, Cunich, & Schofield, 2018). 
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Microsimulation models of the application of genomic testing and precision medicine to childhood 

cancer will be highly valuable to determine which treatments are efficient uses of national health 

resources. One such model currently under development is Paediatric Cancer Model 

(PECANMOD).4 The model utilises data from cancer registry and hospital admission data in New 

South Wales, Australia to simulate events of childhood cancer from the onset (or earliest detectable 

stage), simulating expected life years, and hospital costs. The model will then be used to simulate 

the impact of precision medicine on total costs and expected life years. 

4.3 Genomic testing, serious childhood illness and disability 

Very recently a number of models based on primary data collected from genetics clinics have been 

developed to assess the cost-effectiveness of whole-exome and whole-genome testing, and 

subsequent changes in clinical management in terms of cost and health outcomes of the child, and 

reproductive planning and recurrence of the disorder in related families. The main challenges for 

these studies were the lack of data about the conditions and their natural history (since many of 

the conditions and their genetic cause had only recently been discovered), the heterogeneity of the 

sample (with many different genetic variants leading to the condition), the lack of administrative 

cost data, and the large scope of costs related to the disorders both within the health system and 

other sectors of government (for instance employment, welfare, education, residential care, 

community services, disability services). The data limitations require not only the use of health data 

as the base population for the models, but also extensive primary data collection, such as for the 

development of IDGenMod to simulate the impacts of whole-genome sequencing for familial 

intellectual disability in the EPIC-ID Study.5 Early publications from microsimulation models 

related to genomic testing and childhood syndromes models are already proving important in 

applications for public funding for genomic testing (Ewans et al., 2018; Palmer et al., 2018; 

Schofield, Alam, et al., 2017; Stark et al., 2017; Tan et al., 2017).  

4.4 Methodological development and challenges 

The collection of health data is growing in sample size and complexity, especially in the era of 

genomic medicine. Fortunately, with the significant improvement in computing power, we are able 

to employ sophisticated microsimulation modelling to health data. In addition, future 

microsimulation models also may involve advanced methods of model calibration such as Bayesian 

computation or parallel computation for probabilistic sensitivity analysis. 
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One of the challenges of sharing model development, which is not unique to health 

microsimulation, is that there is no commonly agreed-upon language in microsimulation modelling. 

However, increasingly some models are being published online, as Open Access. Some recent 

models which provide open-access code for their models to be shared include OpenM++ 

(https://ompp.sourceforge.io/), CMOST, a microsimulation model of colorectal cancer (Prakash 

et al., 2017) and JAS-mine, which can be applied to numerous purposes, such as labour modelling 

or health inequality modelling (Richiardi & Richardson, 2017).  

4.5 Conclusion 

From its infancy about 40 years ago, there has been a proliferation of microsimulation applications 

to health. Remarkably, the first recorded model was an ambitious collaboration between Egypt and 

the USA to model family planning as an expanded version of a dynamic population model. 

Microsimulation applications increased rapidly in the 1990s but were often simple cell-based 

approaches imputed onto established models designed for other purposes. These models were 

criticised for not having the benefits of unit record health data and the capacity for distributional 

analysis that distinguished tax-benefit microsimulation models. To overcome this limitation, later 

models began to be developed with health survey data as their base population. The use of health 

data as the primary data source is now an accepted convention, with some models even being based 

on the collection of new primary data specific to the application, where appropriate survey data is 

not available. 

Over the last ten years, we have seen health become one of the most diverse and sophisticated 

applications of microsimulation. The most recent applications of microsimulation are being applied 

to the newest frontiers of medicine, such as genomic testing and personalised medicine. These new 

frontiers of science and medicine are likely to propel the development of health applications of 

microsimulation for decades to come. However early developments in this field relied on aggregate 

data and assumptions rather than on quality data with the inevitable product of flawed results. Thus 

the lessons of the 1990s serve as a timely reminder of the importance of rigorous methods and 

high quality, relevant microdata in this field. 

 

  

https://ompp.sourceforge.io/
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APPENDIX 

Table A.1: Selected microsimulation models of health, by purpose or application between 2007 and 2017. Sections A-H describe specific model types, including cancer, spatial models, disease transmission, cost-

effectiveness, cross portfolio, health policy, cancer, and mortality respectively. 

Table A    
Selected 
cancer models 

Model type Data sources Sample sizes 

USA 
(Goldhaber-
Fiebert et al., 
2007) 

Parameterize, calibrate and 
evaluate a U.S. cervical cancer 
microsimulation model 
intended to provide inputs into 
decisions taken before long-
term data on vaccination 
outcomes become available. 

Cervical Cancer: Systematic reviews, USA 
women under different cervical cancer 
prevention strategies. 

Cohort of women whose cervical cancer screening 
patterns matched nationally observed age-specific 
patterns of screening. 

MISCAN, USA 
(Bradley et al., 
2011)  

Estimate and project 
productivity costs of colorectal 
cancer (CRC) and to model the 
savings from four approaches 
to reducing CRC incidence and 
mortality. 

Colorectal Cancer (CRC): Productivity losses 
from CRC, using CRC incidence and mortality 
through to 2020. 

USA population, with trends in risk factor (smoking, 
obesity, red meat consumption) prevalence, 
screening and treatment. 2000 US Life Table 
published by National Centre for Health Statistics.  

LifeLossMOD, 
Australia 
(Carter et al., 
2016). 

Estimate the productivity costs 
of premature mortality due to 
cancer in Australia, in 
aggregate and for the 26 most 
prevalent cancer sites. 

Mortality due to cancer: A mortality dataset 
and APPSIM microsimulation model. 
Household, Income and Labour Dynamics in 
Australia (HILDA survey). 

Mortality data = 129,513 individuals from all deaths 
recorded by 2003 Burden of Disease and Injury 
Study. APPSIM uses 1% of the 2001 Australian 
Census, 188,000 records. 

POHEM, 
Canada 
(Hennessy et 
al., 2015)  

Dynamically simulate disease 
states, risk factors, and health 
determinants, project disease 
incidence, prevalence, life 
expectancy, health-adjusted life 

Cancer and other chronic diseases. Population of Canada. 
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expectancy, quality of life, and 
healthcare costs. 

Canada, 
(Pataky et al., 
2014) 

Evaluate the cost-effectiveness 
of Prostate-Specific Cancer 
Antigens PSA screening, with 
and without adjustment for 
quality of life, for the British 
Columbia (BC) population. 

Prostate-Specific Cancer. 

 

40 year old men in British Columbia, Canada. 

NSCLC, 
Canada, 
(Bongers et al., 
2016) 

Multistate statistical modelling 
to inform a microsimulation 
model for cost-effectiveness 
analysis in lung cancer. 

Lung cancer: Non-small-cell lung cancer 
(NSCLC). Data were collected on patient and 
tumour characteristics, toxicity and follow-up. 

674 NSCLC patients with inoperable cancer. A sub-
population of 200 patients who received chemo or 
radiation alone was used.  

MAIcare, 
Netherlands 
(van der Meijde 
et al., 2016) 

A microsimulation model 
framework for melanoma 
using underlying tumour 
growth, plus interaction with 
diagnostics, treatments, and 
surveillance. 

Melanoma: Disease progression and clinical 
management data from literature. 

Dutch patient population, with baseline TNM and 
features of the Dutch cancer registry, between 2006 
and 2011. 

LCPM (China 
Lung Cancer 
Model), China 
(Sheehan et al., 
2017) 

Modelling eligibility criteria 
design of lung cancer 
screening. 

Lung cancer: China Health & Nutrition Survey 
(CHNS). Projecting population outcomes 
associated with interventions for smoking-
related diseases, age to begin and end 
screening, pack-years smoked, years since 
quitting, from published literature. 

422,000 male deaths from lung cancer, 175,000 
female deaths from lung cancer. Smoking rates from 
19,000 individuals using a weighted sampling scheme 
within provinces. 

(USA) 
(Subramanian 
et al., 2017) 

Develop an innovative model 
to assess the effectiveness, 
cost, and harms of risk 
stratified colorectal cancer 
(CRC) screening. 

Colorectal Cancer: Census Survey Data, data 
from literature on screening and genetic 
testing of CRC. 

A synthetic cohort reflecting the population of the 
USA and distribution of risk. 
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(Norway) (van 
Luijt et al., 
2017) 

Evaluated breast cancer 
mortality reduction and cost-
effectiveness analysis. 
Comparison of mortality and 
costs with and without 
screening. 

Breast Cancer: Data from the Cancer Registry 
of Norway, by age, year (1990–2010), and stage 
for the whole country were used to model 
screening attendance by age and year. 

 

Imaginary cohort of 10,000,000 women all born in 
1955, with complete follow-up to 2055. 

 

Table B    
Selected 
spatial models 

Model type Data sources Sample sizes 

(Ballas, Clarke, 
Dorling, Rigby, 
& Wheeler, 
2006) 

Dynamic spatial 
microsimulation model: Health 
Inequalities. 

Census data from 1971, 1981 and 1991and 
British Household Panel survey, simulating 
urban and regional populations in Britain. 

41,855 households in 1991, 54,796 households in 
2021. 

(Edwards & 
Clarke, 2009)  

Obesity in children in Leeds. 
Synthetic matching and linear 
regression used.  

Census data from 2001. Obesogenic covariates 
from Health Survey for England (HSE) 2002 
and Expenditure and Food Survey. 

Children aged 3-13 years in the Leeds metropolitan 
area. 1,500 people per Lower Layer Super Output 
Area (LSOA), which are small geographic units built 
from output areas containing ~ 1,500 individuals. 

(Riva & Smith, 
2012)  

Psychological distress and 
heavy alcohol consumption. 
Logistic regression used. 

HSE 2001 data matched to LSOA 
populations. 

30,304 individuals. 

(Koh, Grady, & 
Vojnovic, 
2015)  

Obesity prevalence, Detroit. 
Iterative proportional fitting 
(IPF)-based deterministic 
spatial method. 

2010 Behavioural Risk Factor Surveillance 
System (BRFSS), U.S. Bureau of the Census, 
American Community Survey (ACS). 

The study area is 1,967 square miles with a population 
of 3.86 million. BRFSS respondents, 18 years and 
older from Detroit Tri-County Metropolitan Area in 
2010 (n = 3146). 

(Campbell & 
Ballas, 2016)  

SimAlba in Scotland. Health 
Inequalities. 

Scottish Health Survey (2003) and Census of 
Population (2001) data. 

8,148 adults, 3,324 children. 
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Table 2C 
Selected 
disease 
transmission 
models 

Model type Data sources Sample sizes 

(Goldhaber-
Fiebert et al., 
2007)  

Stochastic microsimulation 
model of the transmission of 
Human Papilloma Virus 
(HPV) for cervical cancer 
prevention.  

HPV infection rates, progression rates 
to/within cancer, regression rates from HPV 
and clearance rates, all-cause and cancer 
mortality rates. 

Individual females enter the model at age 9, based on 
United States data. Model evaluation compared with 
large HPV screening studies.  

(Sander et al., 
2009)  

Stochastic microsimulation 
transmission model: influenza 
pandemic mitigation strategies, 
targeted anti-viral prophylaxis. 

Transmission parameters derived from 
literature on infections from symptomatic and 
asymptomatic infections. 

People interacting in known contact groups, based 
on USA population.  

(Degnan et al., 
2009) 

Bioterrorism through 
biological agents; that is 
bacteria, viruses or toxins (also 
a cost-effectiveness model). 

Demographics, transport flows and trips, 
travel to emergency centres. 

Baltimore MD metropolitan area, 951,000 people. 

Table 2D    
Selected cost-
effectiveness 
models  

Model type Data sources Sample sizes 

(Barnighausen 
& Bloom, 
2009)  

Markov Monte Carlo model of 
cost-effectiveness of sub-
Saharan African health care 
workers for treating 
HIV/AIDS. 

Published literature on patient probabilities, 
and health education costs, salaries per year, 
and treatment costs per patient year.  

Number of people in each sub-Saharan country who 
needed ART and did not receive it 
(UNAIDA/World Health Organisation data). 

(Hiligsmann et 
al., 2009)  

Markov model for cost-
effectiveness of treating and 
preventing osteoporosis. 

Fracture probabilities, mortality rates for each 
age-gender, fracture costs, interventions and 
utility values from published literature.  

Not stated. 
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(Ahern et al., 
2017)  

Weight management trial cost-
effectiveness. 

Randomised Control Trial on weight loss 
interventions in a UK population. 
Assumptions about weight trajectories.  

1,269 participants, 18+ years old, BMI > 28 from 
England. 

Table 2E    
Selected cross 
portfolio 
models 

Model type Data sources Sample sizes 

(Percival et al., 
2007)  

STINMOD: A Static Income 
Model of tax and social security 
systems. 

Survey Data (ABS, Australian Bureau of 
Statistics), Survey of Income and Housing 
data, tax and transfer payment rules.  

Australian population, based on ABS data.  

(Schofield et 
al., 2013) 

Health&WealthMOD. 
Microsimulation of economic 
impacts of ill health.  

Survey Data (ABS), Survey of Disability, 
Ageing and Carers, population and labour 
force growth data from Treasury, disease 
trends from Australian Burden of Disease 
Study, 2003.  

Australian population aged 45-64 years in 2003 and 
2009 SDAC surveys.  

(Schofield, 
Shrestha, et al., 
2017)  

Health&WealthMOD. 
Microsimulation of economic 
impacts of ill health. Results 
estimated & projected to 2030.  

Survey Data (ABS) Survey of Disability, 
Ageing and Carers, population and labour 
force growth data from Treasury, disease 
trends from Australian Burden of Disease 
Study, 2003.  

Australian population aged 45-64 years in 2003 and 
2009 SDAC surveys.  

Table 2F    
Selected 
health 
expenditure 
models 

Model type Data sources Sample sizes 

Intergeneration
al reports, 
Australia 
(Schofield & 

Forecast health expenditure 
and other demographically 
sensitive expenditure over 40 
years. 

Australian Government Budget Papers, 
National Health Survey, The Australian 
Treasury Demographic Forecasts. 

Microsimulation models based on Australian 

National Health Surveys ∼30,000 records. 
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Rothman, 
2007) 

Risk stratified 
colorectal 
cancer 
(Subramanian 
et al., 2017). 

Assess the effectiveness, cost, 
and harms of risk stratified 
colorectal cancer screening. 

National Health Interview Survey (NHIS) for 
risk of colorectal cancer, adjusted to ensure 
incidence is similar to those obtained from the 
Surveillance, Epidemiology, and End Results 
data (SEER). 

Not described. 

Table 2G    
Diabetes 
models 

Model type Data sources Sample sizes 

Non-insulin-
dependent 
diabetes 
mellitus 
(NIDDM), 
USA (Eastman 
et al., 1997)  

Develop a model of NIDDM 
for analyzing prevention 
strategies for NIDDM. 
Predicts rates of microvascular 
complications, CVD and 
mortality to evaluate 
preventative interventions. 

Large clinical trials and epidemiological 
studies. Risk of CVD was based on 
Framingham. 

Not described. 

DiabForcaster, 
UK (McEwan 
et al., 2006)  

Determine the costs and 
outcomes associated with 
modifiable risk factors in 
patients with type 2 diabetes. 

Utility: Health Outcomes Data Repository 
(HODaR), UK 2001–2003 gender-specific 
interim life tables. Eastman diabetes model. 

10,000 diabetic patients. 

UKPDS 
Outcomes 
Model 
(UKPDS-OM), 
UK (Clarke et 
al., 2004) 

A diabetes model used for 
estimating the likelihood of 
major diabetes-related 
complications over a lifetime 
for health economic analysis. 

United Kingdom Prospective Diabetes Study 
(UKPDS). 

3,642 patients. 

UKPDS 
Outcomes 
Model 2 
(UKPDS-

Revised version of UKPDS-
OM, with updated risk, 
mortality, and new events 

UKPDS. 5,102 patients. 
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OM2), UK 
(Hayes et al., 
2013) 

algorithms, and the use of new 
risk factors.  

ECHO, 
Sweden (Willis 
et al., 2013) 

Simulate costs and health 
outcomes and the cost-
effectiveness of type 2 diabetes 
treatments. 

Macrovascular risk equations: UKPDS68, 
UKPDS82, ADVANCE, and the Swedish 
National Diabetes Registry. 

Not described. 

CORE, Swiss 
& US (Palmer 
et al., 2004) 

To determine the long term 
health and economic outcomes 
of diabetes treatments. 

Framingham, UKPDS risk engine and 
outcome model, Diabetes Control and 
Complications Trial (DCCT), and other 
published sources. 

Not described. 

MICADO, 
Netherlands 
(van der 
Heijden et al., 
2015) 

Estimate the long term cost-
effectiveness of interventions 
in people with and without 
diabetes. 

Dutch general practice registry data. 498,400 diabetes patients. 

Michigan 
Model for 
Diabetes 
(MMD), USA 
(Zhou et al., 
2005) 

Assess the impact of screening, 
prevention and treatment 
strategies on type 2 diabetes 
and its complications, 
comorbidities, quality of life, 
and cost. 

Wisconsin Epidemiologic Study of Diabetic 
Retinopathy (WESDR) type 2 diabetes cohort. 
Published literatures.  

1,370 patients. 

Diabetes 
model, 
Australia 
(Walker & 
Colagiuri, 2011) 

Modelling diabetes and its 
health system costs. 

National Health Survey, AUSDIAB. 30,000 patients. 

(Bertram et al., 
2010), Australia 

Evaluate the cost-effectiveness 
of a screening programme and 
follow up interventions for 
pre-diabetes. 

AUSDIAB. 8,000 people. 
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HealthAgeing
MOD, 
Australia, 
(Bertram et al., 
2010) 

Cost-benefit model system of 
chronic diseases to assess and 
rank prevention and treatment 
options. Designed to use 
standard cost-benefit and cost-
effectiveness methods to assess 
the impact of a series of 
simulated policy options 

National Health Survey 2005  

Survey of Disability, Ageing and Carers 2003  

 

25,906 people. 

NCDMod, 
Australia 
(Lymer et al., 
2016) 

Simulate population level 
impacts of interventions to 
prevent/delay chronic health 
conditions, particularly 
diabetes, heart disease and 
obesity. 

National Health Survey 2005, AUSDIAB, 
AUSDRISK, HealthAgeingMOD, Australian 
Health Survey 2011. 

Australian population (~17 million people). 

POHEM-
CVD, Canada 
(Manuel et al., 
2014) 

Models health, health risk 
factors and health costs. 

Canadian Community Health Survey (CCHS). 

 

105,908 people. 

POHEM-BMI, 
Canada 
(Hennessy et 
al., 2017) 

Simulate using BMI to predict 
rates of overweight and obesity 
in the Canadian population 

National Population Health Survey, the 
Canadian Community Health Survey (CCHS), 
and the Canadian Health Measures Survey 
(CHMS). 

5, 000 people. 

Table 2H    
Selected 
mortality 
models 

Model type Data sources Sample sizes 

Productivity 
colorectal 
cancer, USA 
(Bradley et al., 
2011) 

Estimating lost productivity 
from mortality due to 
colorectal cancer. A semi-
Markov microsimulation 
model from CISNET. 

National Cancer Institute's (NCI) Cancer 
Intervention and Surveillance Modeling 
Network (CISNET), MISCAN-Colon, 
National Health Interview Survey. 

USA population based on MISCAN-Colon, and life 
tables from the 2000 US Life Table, from National 
Centre for Health Statistics; 48,748 people. 
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LifeLossMOD, 
Australia 
(Carter et al., 
2016, 2017)  

Dynamic microsimulation 
model from NATSEM. 
Modelling productivity impacts 
of premature mortality from 
cancer. 

2003 mortality dataset and the APPSIM 
microsimulation model, projections from 2003 
to 2030. 

APPSIM uses a 1% sample of the Australian 
population. Mortality data is sourced from 129,513 
individual mortality records, of all registered deaths 
in Australia in 2003, from the 2003 Australian Burden 
of Disease Study.  

(van Luijt et al., 
2017), Norway 

Estimate the breast cancer 
mortality reduction due to 
screening and the cost-
effectiveness of screening 
programme. 

NORDCAN, MISCAN, 2005 Life table from 
Statistics Norway, Cancer Registry of Norway. 

10,000,000 people. 
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1 see https://www.ncbi.nlm.nih.gov/pubmed/. 
2 Dynamic models allow individuals to change their characteristics over time, yet require more data and are more computationally intensive (Li et 

al., 2014). On the other hand, static models, often known as models that simulate the day after impact of a policy changes ignore changes to 
behaviour due to policy. 
3 Pre-implantation genetic diagnosis (PGD) is one of the various options available to couples with a high risk of transmitting a monogenic inherited 

disorder, or structural chromosomal variant to their prospective offspring (Hehr et al., 2014). 
4 Tan, Schofield, Shrestha, and Lymer: NSW HREC Reference No: HREC/17/CIPHS/7. 
5 Schofield et al.: NSW HREC Reference No: HREC/16/HNE/309; NHMRC Partnership Project: APP1113895). 
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