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ABSTRACT: In public health, model predictions are used by decision-makers to minimise health 

burdens and monetary costs of non-communicable diseases. Fully understanding the uncertainty 

underlying those predictions is thus crucial. One-parameter-at-a-time methods are typically used 



INTERNATIONAL JOURNAL OF MICROSIMULATION (2018) 11(3) 100-121  101 

JACCARD, RETAT, BROWN, WEBBER, CHALABI  Global Sensitivity Analysis Of A Model Simulating An Individual’s Health State Through Their Lifetime 

for model uncertainty analysis but are often impractical for large-scale nonlinear models containing 

a very large number of parameters and cannot be used to examine the uncertainty associated with 

parameter interaction. An individual-based chronic disease model was developed to model the 

impact of Body Mass Index (BMI) trends on the rates of non-communicable diseases. The model 

was simulated for overweight and obese male case studies and used to predict their life expectancy, 

disease-free life expectancy and quality-adjusted life years. Uncertainty was estimated by carrying 

out a global sensitivity analysis by assessing the contribution to the overall uncertainty from a 

selection of parameters individually and from their interactions. Results show that the uncertainty 

of the BMI input parameter had the greatest impact on the disease-free life expectancy and quality-

adjusted life year uncertainty compared to the relative risks of colorectal cancer and stroke. Life 

expectancy uncertainty was influenced by BMI and colorectal cancer relative risks. Global 

sensitivity analysis enables the assessment of the parametric uncertainty for individual parameters 

and their interaction. This allows the communication of the uncertainty of different policy options. 

A strategy for scaling-up uncertainty analysis from an individual to a population level is discussed. 

 

KEYWORDS: MICROSIMULATION MODEL, GLOBAL SENSITIVITY ANALYSIS, 

UNCERTAINTY ANALYSIS, PUBLIC HEALTH POLICY PREDICTIONS 
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1 INTRODUCTION 

Microsimulation models are becoming increasing popular in public health (Atella, Belotti, Carrino, 

& Piano Mortari, 2017; Goldman et al., 2009; Gonzalez-Gonzalez, Tysinger, Goldman, & Wong, 

2017; Hennessy et al., 2015; Hunt et al., 2017; McPherson, Marsh, & Brown, 2007; Rogers et al., 

2014). These models have been used to predict the future epidemiological and economic impacts 

of risk factors (e.g. Body Mass Index (BMI), smoking, alcohol consumption) on rates of non-

communicable diseases in a given population (Ahern et al., 2017; Hunt et al., 2017). Typically these 

models simulate the health profile of between 5,000 and 100 million individuals. Due to the 

increasing availability of health-related ‘big’ data and computing power, these models are becoming 

increasingly more complex and data driven. Model input data are commonly extracted from 

multiple sources each with varying levels of uncertainty. In general, a quantification of the 

uncertainty of outputs from public health microsimulation models is not analysed. Uncertainty 

estimates of model outputs which reflect the uncertainty of the model input parameters are 

important to include because they provide more detail about the confidence of these outputs 

(Mathijssen, Petersen, Besseling, Rahman, & Don, 2008). 

There are two main methods for analysing the parametric uncertainty of complex models such as 

microsimulation: deterministic and probabilistic (there is another method which uses fuzzy 

mathematics but it is not as widely used). Deterministic analysis considers fixed variation in 

parameter values whereas probabilistic analysis considers random variations in parameter values. 

Local deterministic sensitivity analysis such as one-at-a-time can be used to analyse the impact of 

the uncertainty from one input parameter on the model output (Saltelli, 1999). However, these 

methods are unrealistic for models with many complex interactions and with a large number of 

input parameters. Probabilistic methods such as the classical Monte Carlo sensitivity analysis can 

be used to analyse the overall output uncertainty from the uncertainty of the input parameters 

(Rutter, Zaslavsky, & Feuer, 2011). However, this does not give direct information about which 

input parameters contribute most to the output uncertainty and the contribution from parameter 

interaction. Global sensitivity analysis (Sobol indices) provides a direct way of assessing the relative 

contribution to the overall uncertainty from each input parameter and their interactions 

(Kucherenko, 2009; Saltelli, 2002; Saltelli et al., 2008, 2010; Sobol, 2001). 

In this study, an individual-based chronic disease model has been developed based on a previously 

developed microsimulation model (Hunt et al., 2017; McPherson et al., 2007). This model has been 

used to evaluate the impact of an individual’s BMI on their life expectancy, disease-free life 
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expectancy and quality-adjusted life year. The model simulates single individuals through time and 

calculates the probability of different events (e.g. disease prevalence, death) similar to a life table 

approach. These individuals would be equivalent to an individual unit in a large-scale 

microsimulation model. The uncertainty of the model input parameters has been incorporated into 

the simulation for each individual to calculate the uncertainty of the model output. This model has 

been simulated within the Problem Solving environment for Uncertainty Analysis and Design 

Exploration (PSUADE) programming framework to analyse the parametric uncertainty by 

estimating the Sobol indices (Tong, 2005). The Sobol indices provide information about the 

uncertainty from model input parameters and their interaction on the model outputs. To our 

knowledge, this method has not been applied to public health microsimulation models (Hennessy 

et al., 2015; Lymer, Schofield, Lee, & Colagiuri, 2016; Manuel et al., 2014). Some studies have 

analysed the uncertainty on an output, however, the contribution from individual parameters and 

their interactions has not been presented (Kypridemos et al., 2016; Sharif et al., 2012). 

2 METHODS 

2.1 The individual-based chronic disease model  

Two individual case studies were simulated in an individual-based chronic disease model through 

time as opposed to several million which would routinely be simulated in the larger microsimulation 

model. Moreover, this model was adapted to probabilistically model the health profile of 

individuals through time. At each time point, the probability that an individual was in a given health 

state was calculated and used to compute the output health metrics (life expectancy, disease-free 

life expectancy and quality-adjusted life years).  

Figure 1 provides a summary of the main processes and data sources that were used in the 

individual-based model. An individual’s starting age, BMI and health status were pre-defined. Each 

year an individual’s BMI levels were updated based on the 18 to 100 year old BMI distribution 

trends disaggregated by sex. In this study the trends were assumed to be static, so the BMI 

distribution was assumed to be stationary, i.e. to not change over time. The 18 to 100 year old 

trends were computed by fitting a non-linear multivariate categorical regression model using 

individual level age, sex and BMI data from the 2013 Health Survey for England (HSE). The 

regression methods are described in the online supplementary material (Appendix). The model 

used an individual’s BMI, age and sex to calculate their risk of disease. The risk of disease was 

calculated from BMI-age-sex relative risks and age-sex incidence rates. Five obesity-related diseases 

were included in the simulation: coronary heart disease; stroke; type 2 diabetes; hypertension; and 
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colorectal cancer. The individual-based model calculated the probability of each health state 

ranging from the probability of not having a disease to the probability of death. The probability of 

an individual living with multi-morbidities was also assessed up to a combination of four diseases 

at any one time. The probability of an individual dying was calculated from the survival rates of a 

given disease and the mortality rates of other causes (more technical details are provided in the 

online supplementary material - Appendix). The total mortality statistics and some of the survival 

statistics were sourced from the Office for National Statistics (ONS). In cases, where the survival 

statistics were unavailable the rates were estimated from prevalence and mortality statistics. Further 

details about these data sources are provided in the online supplementary material - Appendix. A 

utility weight was associated with each disease and these were used to estimate the mean Quality 

Adjusted Life Year (QALY) each year. The sources for this data are summarised in the online 

supplementary material - Appendix. 

Figure 1: Schematic of the individual-based chronic disease model used to simulate individuals through time.  

 

Source: The figure has been adapted from Lymer et al. (2016). 

 

2.1.1 Case studies 

Two 20-year-old case-studies were investigated: an overweight male (BMI=27.5 kg/m2) and an 

obese male (BMI=37.5 kg/m2). Both individuals had no health conditions in the start year of the 
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simulation (2016). The model was simulated between 2016 and 2116 to ensure that the individuals 

are simulated far enough into the future to estimate life expectancy. 

2.1.2 Model outputs 

Obesity is a major risk factor for fatal (e.g. coronary heart disease) and non-fatal (e.g. type 2 

diabetes) diseases and has been shown to have an impact on an individual’s healthy life expectancy 

(disease-free life expectancy) (Stenholm et al., 2017). Three outputs were assessed in this study: life 

expectancy, disease-free life expectancy and quality-adjusted life years. Life expectancy was 

calculated from the sum of the probabilities of the individual being alive in each year of the 

simulation and was initialised with the age of the individual in the start year of the simulation (see 

Equation 1). The disease-free life expectancy was calculated from the sum of the probability of an 

individual being alive without a disease in each year of the simulation (see Equation 2). This health 

metric was also initialised with the starting age of the individual. The quality-adjusted life year was 

initialised with the age of the individual in the start year of the simulation. It was calculated by 

summing the probability of being alive without a disease and the probability of being alive with a 

disease multiplied by the average quality of life (QoL) in the given year (see Equation 4). The 

average QoL was calculated from the utility weights which were specific to the diseases that an 

individual may have in a given year (see Equation 3). The average QoL was weighted based on the 

probability of having each disease.  
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Equations 1, 2 and 4 are discrete time dynamic equations in steps of one year. The first term on 

the right hand side of these equations gives the age of the individual at the start of the simulation. 

The summation term of Equation 1 sums the probabilities that the individual is alive at each year. 

The summation term of Equation 2 only sums the probabilities that the individual is disease-free. 
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The summation term of Equation 4 sums the probabilities that the individual is alive with no 

disease and the probabilities that the individual is alive with a disease scaled by the average QoL. 

2.1.3 Model input parameter uncertainty 

Information on the uncertainty from three different model input parameters was available in the 

literature and included in this analysis. The first model parameter was the BMI distribution trends. 

BMI trends by 5 year age groups were created for males, providing information on the probability 

of individuals in each BMI category (healthy weight, overweight and obese) across each 5 year age 

group from 2003 to 2116. The mean and standard deviation for each BMI category were calculated 

across all of the adult age groups (≥ 20 years old) between 2003 and 2116 (see Table 1). The overall 

mean probability and standard deviation across all of the BMI categories were also calculated from 

the mean and standard deviation from each BMI category. The upper and lower bounds for the 

healthy weight, overweight, obese and average BMI category probabilities were calculated by 

assuming a uniform distribution of uncertainty around each probability. Uniform distribution is 

often used as an uninformed prior distribution when there is a lack of precise information on 

parameter uncertainty. This provided an estimation of the uncertainty around the proportions of 

individuals within each BMI category. 

In general, BMI distributions in a population are represented by a log-normal distribution. A log-

normal distribution of the average adult male BMI levels was constructed from the mean 

probabilities of each BMI category. The mean BMI level (25.192) at the percentile corresponding 

to the mean BMI category probability (0.333) was estimated. In addition, the lower and upper 

bounds for the mean BMI level were estimated at the lower and upper bounds of the mean BMI 

category probability. The mean BMI level and the corresponding lower and upper bounds were 

used to estimate the lower and upper bounds around the BMI of each case study. It was assumed 

that the difference between the mean BMI level and the lower and upper bounds was the same as 

the difference between the BMI level of each case study and the corresponding lower and upper 

bounds (see Table 1). 
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Table 1: Summary of the BMI model parameters and their variances used in the sensitivity analysis.  

Model parameter  Mean Standard 
deviation 

Lower 
bound 

Upper 
bound 

Healthy weight BMI probability 
(BMI < 25 kg/m2) 

0.252 0.078 0.117 0.387 

Overweight BMI probability  
(25 ≤ BMI < 30 kg/m2) 

0.314 0.083 0.170 0.459 

Obese BMI probability  
(BMI ≥ 30 kg/m2) 

0.434 0.107 0.248 0.619 

Mean BMI category probability 0.333 0.090 0.177 0.490 

Mean BMI1 level 25.192  20.591 27.028 

Case study 1 BMI level 27.5  22.899 29.336 

Case study 2 BMI level 37.5  35.207 41.644 

 

The second and third parameters used in the uncertainty analysis were the relative risk of stroke 

and colorectal cancer, respectively. These were chosen because there were uncertainty estimates 

available in the literature. Granular relative risks were available by age and sex groups from the 

DYNAMO-HIA project (World Obesity Federation, 2008). An average of the overweight (25-30 

kg/m2) and obese (≥ 30-45 kg/m2) groups was calculated for males. Variance estimates around 

each of these relative risks were not provided. The variance of the relative risk of stroke and 

colorectal cancer for overweight and obese were sourced from Guh et al. (2009) and used as a 

proxy for the variances around the DYNAMO-HIA relative risks. As this dataset contained only a 

single relative risk estimate for the overweight and obese categories, the estimates did not vary with 

age. The uncertainty was represented by a uniform distribution around each mean relative risk (see 

Table 2). The upper and lower bounds of each uniform distribution are presented in Table 2. 

Table 2: Summary of the relative risk model parameters and their variances used in the sensitivity analysis.  

Model parameter Mean Standard 
deviation  

Lower 
bound 

Upper 
bound 

Relative risk stroke for overweight  1.213 0.056 1.116 1.310 

Relative risk stroke for obese  1.758 0.107 1.573 1.944 

Relative risk colorectal cancer for 
overweight  

1.231 0.082 1.089 1.373 

Relative risk colorectal cancer for 
obese  

1.823 0.224 1.435 2.211 
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2.2 Sobol (Global) Sensitivity Indices 

Denote the uncertain input parameters by 𝑥1…𝑥𝑛 where 𝑛 is the number of uncertain parameters. 

The three uncertain input parameters used in this study represented the BMI value, relative risk of 

stroke and relative risk of colorectal cancer. Denote further by 𝑦 the output (outcome) of interest 

and by 𝑓 the analytical model or the black-box model (i.e. computer model) which maps the input 

parameters to the output (Equation 5): 

  1 2, , , ny f x x x    (5) 

where the output parameter y represents life expectancy, disease-free life expectancy and quality-

adjusted life years. The aim of the global sensitivity analysis method is to determine the contribution 

of the uncertainty (variance) in each of the input parameters 𝑥1…𝑥𝑛 ( ( ))i iV x  and their interactions 

( ( , ))ij i jV x x  to the uncertainty (variance) of the output 𝑦. The total number of parameters 𝑚 of the 

model can of course be much larger than 𝑛, i.e. 𝑚 ≫ 𝑛. However, what is important here are the 

parameters which are considered to be uncertain. The variance of the output can be decomposed 

as follows (Equation 6): 

        1 .

1 1 1

,
n

i i ij i j ijk n

i i j n i j k n

V f V x V x x V V

       

     x   (6) 

Where V(f(x)) is the variance of the output, i.e. the variance of the life expectancy, disease-free life 

expectancy and quality-adjusted life year. This variance is composed of the variance from individual 

input model parameters (Vi(xi)), variance from the interaction of two input model parameters 

(Vij(xi,xj)) and the variance from the interaction of three or more input model parameters. In other 

words, the total variance of the output is the sum of the variances of the input parameters and all 

the orders of their interactions. 

Sobol indices are a measure of global sensitivity analysis (Kucherenko, 2009; Saltelli, 2002; Saltelli 

et al., 2008, 2010; Sobol, 2001). They enable the quantification of the contribution of individual 

model input parameters and their interaction to the total variance of the model output parameter 

(V). The first order Sobol indices (Si) relate to the individual contribution from each parameter 

(see Equation 7).  

 



INTERNATIONAL JOURNAL OF MICROSIMULATION (2018) 11(3) 100-121  109 

JACCARD, RETAT, BROWN, WEBBER, CHALABI  Global Sensitivity Analysis Of A Model Simulating An Individual’s Health State Through Their Lifetime 

 
i

i

V
S

V
   (7) 

The second order Sobol indices relate to the interaction between two parameters i and j. The 

contribution from each pair of interactions is described in Equation 8. 
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Each Sobol index must be less than one and the sum of all the sensitivity indices is one (Equation 

9). 

 1
n n n

i ij ijk

i i j i j k

S S S
  

       (9) 

The main assumption of the global sensitivity analysis method is that these parameters are 

independent. If required, the global sensitivity analysis method can be modified to handle 

dependence between the parameters by using Copulas (Kucherenko, Tarantola, & Annoni, 2012).  

2.3 Analysing the Sobol indices for each model output 

The first and second order Sobol indices for each model output were analysed with PSUADE, an 

open-source software package developed by Charles Tong (Tong, 2005). The software was used to 

generate auxiliary variables (z1, z2 and z3) which were used as scalar additives to vary the true model 

input parameters within the uncertainty bounds. This was required because the relative risks for 

stroke and colorectal cancer varied with age and the uncertainty estimates for these model 

parameters were extracted from a source which only provided the uncertainty around single relative 

risks for all age groups. The uncertainties provided around these single relative risks were used as 

a proxy for the uncertainty around all the relative risks which varied with age and BMI. As an 

individual aged through the course of the simulation, they would be assigned a new probability of 

acquiring a disease based on their current age, sex and BMI. The distribution of each variable z1, z2 

and z3 sampled randomly with PSUADE in the start year of the simulation are summarised in Table 

3. The variables z1, z2 and z3 were used to scale the BMI, relative risk of stroke and relative risk of 

colorectal cancer, respectively in the model as shown in Equations 10 to 12.  
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Table 3: Scalar additives z1, z2 and z3 sampled by PSUADE. 

PSUADE 
parameter 

Lower bound for 
overweight 

Upper bound for 
overweight 

Lower bound 
for obese 

Upper bound 
for obese 

z1 22.899 29.336 35.207 41.644 

z2 1.116 1.310 1.573 1.944 

z3 1.089 1.373 1.435 2.211 

 

 
1( ) ( ) ( )mean trendBMI t z BMI BMI t     (10) 

 
2( , ) ( ) ( , )stroke StrokeMean strokeRR BMI age z RR RR BMI age     (11) 

 3( , ) ( ) ( , )bowel ColorectalCancerMean ColorectalCancerRR BMI age z RR RR BMI age     (12) 

 

The BMI prevalence and relative risk were correlated in the model because the relative risk was 

dependent on the BMI level. Constraints were applied on the parameters z2 and z3 which were 

scalar additives for the relative risks of stroke and colorectal cancer, respectively to account for this 

dependency. The relative risks for both diseases varied for two different age groups and by BMI. 

For each age group, a linear function was fitted to the relative risk by BMI level. For each disease, 

an average linear function was calculated from the linear functions approximated for the two age 

groups (further details are provided in online supplementary material). These average linear 

functions for stroke (see Equation 13) and colorectal cancer (see Equation 14) were used to define 

constraints on the sampled variables (z1, z2 and z3).  

 2 10.26095 0.0539* 0.1z z     (13) 

 3 10.36905 0.0585* 0.1z z     (14) 

 

3 RESULTS 

In this section, the uncertainty analysis for life expectancy, disease-free life expectancy and quality-

adjusted life year will be shown for both case studies: an overweight and an obese male aged 20 in 

2016. The uncertainty for each of the model outputs will be shown in terms of the first- and second-

order Sobol indices. For each model input parameter that has been studied, it will be checked if 

they are strictly positive and contribute to the uncertainty of each model output. 
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3.1 Disease-free life expectancy 

The mean, standard deviation and variance of the disease-free life expectancy are summarised in 

Table 4. The mean number of year’s disease free was shown to be greater for the overweight male 

compared to the obese male 63 and 48 years, respectively. The standard deviation around the obese 

male mean disease-free life expectancy was similar to the standard deviation around the overweight 

disease-free life expectancy mean. 

Table 4: Summary of the mean, standard deviation and variance for the disease-free life expectancy for the two case studies. 

Case study Mean (years) Standard deviation (years) Variance (years2) 

Overweight male 63.47 3.41 11.59 

Obese male 48.32 3.14 9.87 

 

The individual impact of the uncertainty of the three input parameters on the disease-free life 

expectancy is shown in Figure 2. The graph shows the first-order Sobol indices for each of the 

three input parameters. The first parameter, which relates to the BMI value, is shown to have the 

greatest impact on the overall uncertainty of the disease-free life expectancy output for both the 

overweight and obese males. The smallest impact is from the parametric uncertainty of the relative 

risk of stroke for both case studies. For the overweight male, there was shown to be a much larger 

difference between the BMI and relative risk first-order Sobol indices. 

Figure 2: A graphical illustration of the first-order Sobol indices for each model input parameter: BMI, relative risk of stroke and relative risk of 
colorectal cancer for disease-free life expectancy. 

 

The second-order Sobol indices were not strictly positive and did not contribute to the uncertainty 

of the disease-free life expectancy.  
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3.2 Life expectancy 

The impact of the parametric uncertainty of the three model input parameters on the life 

expectancy was much smaller compared to the disease-free life expectancy. Table 5 shows the 

mean, standard deviation and variance life expectancy for each case study. 

Table 5: Summary of the mean, standard deviation and variance for the life expectancy for the two case studies. 

Case study Mean (years) Standard deviation (years) Variance (years2) 

Overweight male 79.76 0.11 0.01 

Obese male 79.17 0.31 0.09 

 

There was a mean life expectancy difference of approximately 0.6 years between the overweight 

and obese individuals. The standard deviations for the overweight and obese individuals were 0.11 

and 0.31 years, respectively. The first-order Sobol indices were analysed for both case studies and 

the results are presented in Figure 3. The results show that the uncertainty from the relative risk of 

colorectal cancer contributes the most to the overall uncertainty of the life expectancy. However, 

the BMI also contributes to the uncertainty. 

Figure 3: A graphical illustration of the first-order Sobol indices for each model input parameter: BMI, relative risk of stroke and relative risk of 
colorectal cancer for life expectancy. 

 

The second-order Sobol indices were not strictly positive and did not contribute to the uncertainty 

of the life expectancy. 

3.3 Quality-adjusted life years 

The mean quality-adjusted life years for an overweight and an obese male were 75 and 70 years, 

respectively (Table 6). The standard deviations around each of the case studies were similar. 
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Table 6: Summary of the mean, standard deviation and variance for the quality-adjusted life years for the two case studies. 

Case study Mean (years) Standard deviation (years) Variance (years2) 

Overweight male 75.09 1.01 1.02 

Obese male 70.06 1.06 1.12 

 

The impact from each of the model parameters is shown in Figure 4. The relative impact from 

each of the three model parameters on the uncertainty of the quality-adjusted life year outputs were 

similar to the results observed for disease-free life expectancy. BMI has the greatest contribution 

to the overall uncertainty of the quality adjusted life years for both the overweight and obese case 

studies. In the overweight case study, BMI is the only model parameter which contributes to the 

quality-adjusted life year uncertainty when compared to the relative risk of stroke and relative risk 

of colorectal cancer. For the obese male both BMI and the relative risk of colorectal cancer have 

an impact on the uncertainty of this model output. 

Figure 4: A graphical illustration of the first-order Sobol indices for each model input parameter: BMI, relative risk of stroke and relative risk of 
colorectal cancer for quality-adjusted life year. 

 

The second-order Sobol indices were not strictly positive and did not contribute to the uncertainty 

of the quality adjusted life year.  

4 DISCUSSION 

We have estimated the uncertainty of three model outputs: life expectancy, disease-free life 

expectancy and quality-adjusted life years in an individual based model. Global sensitivity analysis 

was carried out to calculate the contribution from BMI trends, relative risk of stroke and relative 

risk of colorectal cancer on the uncertainty of the life expectancy, disease-free life expectancy and 

quality-adjusted life years. An overweight and an obese male were modelled as case studies. BMI is 
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shown to have an impact on the mean disease-free life expectancy and quality-adjusted life years 

and only a small impact on mean life expectancy. From the three input parameters investigated 

only the uncertainty from the BMI trends contributed to the uncertainty of the disease-free life 

expectancy and the uncertainty of the quality adjusted life year for the overweight case study. 

However, the life expectancy uncertainty was influenced by the BMI trends and relative risk of 

colorectal cancer uncertainties. To our knowledge, this is the first time that global sensitivity 

analysis has been applied to an individual-based chronic disease model (Hennessy et al., 2015; 

Lymer et al., 2016; Manuel et al., 2014). 

4.1 Disease-free life expectancy 

An individual’s disease-free life expectancy was calculated by the summing over the annual 

probabilities that an individual lived without a disease in their lifetime. The model simulated 

additional obesity-related diseases which were not included in the global sensitivity analysis. The 

uncertainties for these parameters were not included because the uncertainty estimates around 

these model input parameters were difficult to reliably source. These model parameters included 

the relative risks of type 2 diabetes, hypertension and coronary heart disease. The probability that 

an individual acquired a disease was primarily driven by BMI. The uncertainty of the relative risk 

of stroke and colorectal cancer did not have an effect on the incidence of type 2 diabetes, 

hypertension and coronary heart disease. The uncertainty of the BMI trends was therefore likely to 

have a larger influence on the disease-free life expectancy uncertainty. 

A large difference in the mean disease-free life expectancy was observed between an overweight 

and an obese male. This was expected because obese individuals have a greater probability of 

acquiring obesity related diseases. The uncertainty of the disease-free life expectancy for the obese 

male was relatively larger than the overweight male disease-free life expectancy. This is related to 

there being a greater uncertainty around the model input parameters for the obese male.  

4.2 Life expectancy 

The contribution from the model input parameters to the uncertainty of life expectancy was more 

distributed amongst the model inputs for the overweight and obese male. The uncertainty of the 

life expectancy estimate was much smaller compared to the uncertainty of the disease-free life 

expectancy. The model also takes account of deaths from other causes. The uncertainty of the 

mortality rates from other causes was not incorporated into this uncertainty analysis. Therefore, 

uncertainty reported in this study is likely to underestimate the total uncertainty. The BMI trends 
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are likely to have had a smaller effect on life expectancy compared to disease-free life expectancy 

because of the type of additional diseases that were modelled in this study. Type 2 diabetes and 

hypertension were non terminal diseases, which would not impact on the life expectancy. As 

previously discussed these diseases did have an impact on disease-free life expectancy. Moreover, 

each case study had vastly different BMI levels, 27.5 kg/m2 and 37.5 kg/m2 and only a small 

difference was observed in the mean life expectancy. This evidence suggests that the uncertainty in 

BMI levels would only have a small impact on the life expectancy uncertainty. The uncertainty of 

the relative risk of colorectal cancer also contributed to the uncertainty of life expectancy compared 

to the relative risk of stroke. The uncertainties around relative risks for colorectal cancer were 

greater than the uncertainties for the stroke relative risks. Therefore, the colorectal cancer relative 

risk uncertainties were more likely to contribute to the life expectancy uncertainties compared to 

the stroke relative risks. 

4.3 Quality-adjusted life year 

The total quality-adjusted life years for an individual were calculated based on the probability that 

an individual had a particular disease and the probability that an individual was disease free. The 

probability that an individual had a particular disease was scaled by the QoL of the individual in a 

given year. The average QoL was estimated from the diseases that an individual may have in a given 

year. The QoL for an individual varies between zero (dead) and one (alive and disease-free). The 

quality-adjusted life year for an obese individual was lower compared to the overweight individual. 

This is because an obese individual is more likely to be living with obesity related diseases. It is 

unlikely that the probability of death had an impact on this difference in the quality-adjusted life 

years between the overweight and obese individual because there were only very small differences 

between the mean life expectancies of the two case studies. 

BMI was the only model parameter to contribute to the uncertainty of quality-adjusted life year for 

the overweight case study. A similar outcome was observed for the disease-free life expectancy. 

BMI and the relative risk of colorectal cancer contributed to the uncertainty of the quality adjusted 

life years for the obese individual. Colorectal cancer had a QoL equal to 0.68 compared to stroke 

which had a QoL equal to 0.713. The diseases that have a lower QoL are likely to have a larger 

impact on the quality-adjusted life years. In addition, the obese individual had a higher chance of 

acquiring colorectal cancer compared to the overweight individual. Therefore, it was more likely 

that the uncertainty of the colorectal cancer relative risks would have a larger impact on the 

uncertainty of this model output for the obese individual. Additional diseases were included in the 
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simulation but not in the uncertainty analysis. Diseases such as type 2 diabetes also have a relatively 

low QoL equal to 0.66. It is highly likely that the uncertainty of the relative risks for type 2 diabetes 

would also have an influence on the uncertainty of the quality-adjusted life years if they were 

included in the uncertainty analysis. 

4.4 Limitations 

There are limitations in this study with regards to the sources of uncertainty, the assumptions used 

to approximate the uncertainty and the small subset of parameters assessed. One limitation relates 

to the estimation of the uncertainty from the BMI trends. The average uncertainty was obtained 

from averaging the uncertainty across each five year age group and BMI category and up to 100 

years into the future. However, the uncertainty in the BMI projections did not remain constant and 

actually increased over time. The uncertainty of the BMI used in this analysis is likely to be an 

overestimate. Further work will investigate whether a time varying uncertainty can be included in 

the global sensitivity analysis. This is particularly important because the time horizon of interest 

will vary depending on the starting age of an individual. Future work will need to adapt the 

uncertainty estimation based on the time horizon of interest. Another limitation relates to the 

sample size used by the PSUADE program. This was set to 20,000 samples. However, after the 

samples were filtered based on the constraints, the sample size was reduced to 31% and 12% of 

the original samples for the overweight and obese case studies, respectively. In order to scale this 

process to the microsimulation, an optimal number of samples required will need to be assessed to 

minimise the computational time taken to run the model. 

We were unable to obtain uncertainty estimates for all of the parameters used in the model. A high 

number of model input parameters were sourced from published literature (see the online 

supplementary material for further details). In many cases the uncertainties of these point estimates 

were not provided. In this study it was only possible to obtain the standard deviations around one 

overweight and one obese relative risk for stroke and colorectal cancer (Guh et al., 2009). The 

uncertainties were not disaggregated by age or sex. However, a different source was used to 

approximate the mean point estimates for the model (World Obesity Federation, 2008). 

Overweight and obese case studies were chosen based on the uncertainty data available for relative 

risks. These data were more granular and were broken down by age, sex and BMI groups. More 

granular data was preferred for the individual based model, as the relative risks varied between 

different age, sex and BMI groups. The standard deviations obtained from the less granular relative 

risks were used as a proxy for the granular relative risks. These uncertainties may have been 



INTERNATIONAL JOURNAL OF MICROSIMULATION (2018) 11(3) 100-121  117 

JACCARD, RETAT, BROWN, WEBBER, CHALABI  Global Sensitivity Analysis Of A Model Simulating An Individual’s Health State Through Their Lifetime 

overestimated because age, sex and BMI may have contributed to the uncertainty around the less 

granular relative risks. In general, the risk of these diseases increases with age. Therefore, the 

uncertainty used when the individual was in their 20’s to 40’s may have overestimated the 

uncertainty from these parameters. Although, when an individual reached an older age, this 

uncertainty may have been underestimated. This will depend on the original cohort used to estimate 

the relative risks and their associated uncertainties. 

We have addressed only parametric uncertainty in this study. We did not address structural 

uncertainty. By their nature, model parameters are, however, conditional on model structure. 

Structural uncertainty is concerned with the uncertainty in the structure of the model. This can take 

several forms such as the uncertainty in the high-level methodological assumptions made to 

construct the model (e.g. in relation to characterising the health trajectory of an individual), the 

uncertainty in the number of state variables in the model (e.g. number of disease and health states), 

the uncertainty in the relationships governing the associations between the model variables (e.g. 

the associations between disease relative risk and BMI and age). There are various methods to 

address structural uncertainty but we have not incorporated any of them in this study (Bojke, 

Claxton, Sculpher, & Palmer, 2009; Strong, Oakley, & Chilcott, 2012). 

This study has focused on a method for assessing parametric uncertainty in complex nonlinear 

models. This is important for models where the outputs are used by decision makers and therefore 

need to be trusted. Modelling standards for good research practices have been developed by the 

International Society for Pharmacoeconomics and Outcomes Research to improve the reliability 

and transparency of models reported in the literature (Caro, Briggs, Siebert, & Kuntz, 2012). These 

good research practices highlight the need to include uncertainty analysis in addition to validation 

and comparisons with other models in the field. Internal and external validation is an important 

and consistent theme across a number of modelling guidelines (American Diabetes Association 

Consensus Panel, 2004; Caro et al., 2012; Palmer et al., 2013). The uncertainty analysis method 

described in this study will contribute towards standardising dissemination of modelling outputs. 

4.5 Future work 

This study has focused on a small subset of model input parameters to demonstrate the application 

of applying global sensitivity analysis techniques to an individual based model, a simplified version 

of the UK Health Forum (UKHF) microsimulation model. This study is a precursor for applying 

global sensitivity analysis to the UKHF microsimulation model. Future work will increase the 

number of model input parameters that are incorporated into the global sensitivity analysis. In 
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addition, the method will be scaled up in order to incorporate differences from within a population 

in the microsimulation model. However, future analyses will optimise this process by identifying 

the key model input parameters that contribute to the uncertainty of different model outputs and 

assess the sample and population sizes required to obtain accurate uncertainty estimates which can 

help inform public health policies. 
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NOTES 

1 The average BMI was approximated from the BMI distribution in 2013 as predicted by the static trend. The BMI 
was calculated from the average BMI category percentile mean, lower and upper bounds. 

 


