
Bandi and George.	 International Journal of Microsimulation 2020; 13(2); 79–101	DOI: https://​doi.​org/​10.​34196/​ijm.​00219� 79

RESEARCH ARTICLE

*For correspondence: 
​marsh.​bandi@​gmail.​com

‍ ‍This article is distributed 
under the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

Author Keywords: 
microsimulation, VISSIM, 
vehicle characteristics, driver 
characteristics, traffic flow 
modeling, sensitivity analysis
© 2020, Bandi and George.

Calibration of Vehicle and Driver 
Characteristics in VISSIM and ANN-based 
Sensitivity Analysis
Marsh M Bandi1*, Varghese George1

1National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, India

Abstract Traffic-flow modeling using microsimulation approaches facilitates the study of bottle-
necks and assists in the analysis of traffic-flow characteristics, the movement of individual vehicles, and 
in the study of vehicle and driver characteristics. The present study focuses on performing investiga-
tions on assessing the influence of vehicle and driver characteristics on accurate prediction of traffic 
volumes in Mangalore city road network. The multi-stage first-level of calibrations were performed 
starting with default values of vehicle and driver characteristics followed by testing of various 
combinations. The accuracy of predicting simulated volumes was measured using GEH-statistic. An 
ANN-based sensitivity analysis was performed to find the relative importance of vehicle and driver 
characteristics, which revealed that the average standstill distance, minimum look-ahead distance, 
and the desired speed: lower bounds for speed distributions were highly sensitive. The second-level 
of calibrations were performed by fine-tuning these three characteristics in three stages and the final 
VISSIM model was validated.
JEL classification: C45, C63, L91, L92, O18, O21, R42
DOI: https://​doi.​org/​10.​34196/​ijm.​00219

1. Introduction
Congestion and traffic delays in urban road networks have become a characteristic feature of present 
cities. In developing economies, the heterogeneous mix of slow and fast-moving vehicles have further 
contributed to the chaos resulting in roads operating below existing capacities. Traffic engineers 
and transport planners often resort to traffic flow modeling techniques in order to evolve strategies 
for effective transport management. In this context, simulation-based approaches are found to be 
more effective in modeling the traffic flow on roads. Traffic flow modeling using micro-simulation 
approaches facilitate the study of bottlenecks and assists in the analysis of traffic flow characteristics, 
the movement of individual vehicles, and the study of vehicle and driver characteristics.

The present study focuses on performing investigations on assessing the influence of vehicle and 
driver characteristics on the prediction of traffic volumes at 18 mid-block sections of the road network 
in Mangalore city for VISSIM-based microsimulation modeling of heterogeneous traffic conditions. 
A 16-minute video-graphic data with information on traffic flow and speed at important junctions, 
in addition to speed and volume data on 18 mid-block sections of the city for the evening-peak 
hour were used in the analysis. Out of the 16-minute video-graphic data, information pertaining to 
12-minutes was used in the calibration procedure, while the remaining data was used in the validation 
of VISSIM model.

The initial phase of this study includes preparation of a high-resolution map of the city to a scale 
of 1:5000 using Gimp (a high-end image processing software), which was imported to AutoCAD and 
later superimposed with an AutoCAD drawing of the road-junctions and linking-roads of the city. 
The AutoCAD drawing and the scaled image were then exported to VISSIM. Preliminary modeling 
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in VISSIM was performed using default values of vehicle and driver characteristics to determine the 
best random seed. For the existing network and the existing traffic conditions in the city, the best 
random seeds were identified as 25 and 42. The simulated and observed values of traffic volume were 
compared using the GEH statistic originally developed by Geoffrey E. Havers. This approach has been 
recommended for modeling studies by several agencies (DMRB, 1996; Smith and Blewitt, 2010; 
UKDoT, 2014; Wisconsin, 2005; WSDoT, 2014).

In the next phase, the multi-stage first-level of calibration trials were conducted using random seed 
42 in VISSIM starting with default values of vehicle and driver characteristics, followed by testing of 
various combinations of the same. A number of combinations of values assigned to vehicle charac-
teristics such as the minimum lateral clearance, acceleration distributions, deceleration distributions, 
the desired speed distributions were analysed and fine-tuned in addition to driver characteristics such 
as the minimum look-ahead distance, minimum look-back distance, additive part of desired safety 
distance, multiplicative part of desired safety distance, average standstill distance, minimum longitu-
dinal speed (for lateral movement), time-between direction changes, and minimum collision time-gain 
(for lateral movement to the adjacent lane).

The multi-stage first-level of calibration trials were performed in 14 major stages with sub-stages 
at the 2nd, 3rd, and the 7th stages such that the traffic scenario of roads in Mangalore city could be 
represented to a higher degree of accuracy. At each stage of calibration, an attempt was made to 
improve the accuracy of predicting traffic volumes at 18 mid-blocks of the city by verifying the mean 
absolute error (MAE) in addition to the GEH statistic as an indicator.

Subsequently, information on the vehicle and driver characteristics used in each stage of the first-
level of calibrations and the details on the prediction errors for various trials were given as input to 
an Artificial Neural Network (ANN) model. The ideal configuration of the ANN model was arrived at 
based on a number of trials performed in EasyNN-plus software. Using the details on the connec-
tion weights, an ANN-based sensitivity analysis was performed using the approach recommended by 
Özesmi and Özesmi (1999).

Based on the sensitivity analysis performed, the relative importance of input variables was computed. 
Here, it was observed that the characteristics such as the average standstill distance, minimum look-
ahead distance, and the desired speed: lower bound values assigned for speed distributions of each 
vehicle type were found to have a major influence on the accuracy of predictions in microsimulation 
modeling using VISSIM. The second-level of calibrations were performed by fine-tuning the values of 
the characteristics that were found to be highly sensitive in the sensitivity analysis and the prediction 
errors were found to decrease further. The VISSIM model was validated using the remaining four-
minute video-graphic data for traffic flows on 423 links of the major road network of the city covering 
an area of about 3 square km and the prediction errors were found to be within tolerable limits.

The proposed two-level multi-stage calibration approach with an ANN-based sensitivity analysis 
introduced in between in the present study is expected to provide traffic engineers and planners with 
a novel framework for the development of reliable microsimulation models to be considered. The 
approach discussed above will provide the basis for evolving strategies for improving the prediction 
of traffic flows in the road network for better traffic management.

2. A Brief Review on Applications of Microsimulation in 

Traffic Flow Modeling
VISSIM is a powerful micro-simulation tool that can perform modeling and analysis of traffic flow on 
urban roads, as well as on inter-urban motorways. A number of studies have been performed using 
microsimulation techniques in modeling urban traffic.

Fellendorf and Vortisch (2001) calibrated and validated the VISSIM model for freeways in 
Germany and US by modeling driver behavior where the traffic regulations were very much different. 
The main focus of this study was to investigate the longitudinal movement of cars as part of the car 
following model by simulating various types of driver behavior. The study was performed considering 
traffic conditions with flows up to 2400 vehicles/h/lane characterized mainly by the movement of cars 
that follow a strict lane-discipline for freeways. Mosseri et al. (2004) performed studies on evaluating 
traffic management strategies at the Lincoln Tunnel Corridor in New Jersey focused on traffic move-
ment on high-occupancy lanes, exclusive bus lanes, and toll lanes.
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Park and Schneeberger (2003) suggested a nine-step procedure for testing, calibration, and vali-
dation of a VISSIM model based on studies on Lee Jackson Memorial Highway, Fairfax, Virginia. The 
authors found it essential to perform simulation trials using field data such as speed and volume for 
freeways in order to calibrate Wiedemann-99 (1974) car-following characteristics such as start-up 
lost time, sensitivity related to car-following, the time required to perform lane-change operations, 
acceptable gaps, and driver behavior that cannot be easily measured on field.

Dorothy et al. (2006) modeled a large-scale transport network in Columbus, Ohio using VISUM 
and VISSIM adopting measures of effectiveness such as queue length, average delay, and fuel emis-
sions. Mathew and Radhakrishnan (2010) devised an approach to test and calibrate models simu-
lating heterogeneous flows at road junctions. The vehicle and driver parameters to be calibrated were 
identified using a sensitivity analysis and the values of these were further optimized using the Genetic 
Algorithm (GA) to ensure lesser prediction errors. Data collected from two intersections in Trivandrum 
City and one intersection from Jaipur City was used for this purpose.

Siddharth and Ramadurai (2013) performed investigations on ANOVA-based sensitivity analysis 
and derived the optimal values of characteristics using GA while automatically calibrating a VISSIM 
model for heterogeneous traffic conditions for IT-Corridor State Highway in Chennai. Lu et al. (2016) 
adopted a video-based method for calibrating car-following characteristics in VISSIM for studies 
performed in Waterloo, Canada. Bede et  al. (2017) performed studies on modeling look-ahead 
controlled vehicles moving at cruising speeds. In these vehicles, the speed is optimized based on the 
need to minimize energy consumption, travel-time for various terrain conditions, and speed limits. 
The study was performed for various classes of vehicles.

Karakikes et al. (2017) developed a VISSIM model to analyse a network of 500 links and 113 nodes 
in Bavaria based on travel-time determined using Bluetooth detectors. The methodology adopted in 
calibration and validation ensured accuracy of 96.5% for both cars and heavy vehicles. Sadat and 
Celikoglu (2017) developed a VISSIM model to study the impact of variable speed limits on Istanbul 
Freeway D100 over a distance of 5.2km. MATLAB was used to arrive at the variable speed limits based 
on volume, occupancy, and average speed. In this study, the vehicular movements in the network were 
monitored using the Remote Traffic Microwave Sensor (RTMS) provided by the Istanbul municipality.

Srikanth et al. (2020) conducted studies on lane-change behavior for multi-lane divided highways 
using VISSIM where it was observed that the number of lane-changes depends mainly on the traffic 
volume and the number of lanes along the direction of travel. The study also analysed lane-changes 
for traffic operating at maximum capacity. It was also found that random seed 40 performed much 
better than random seeds 41, 42, 43, and 44.

In the studies mentioned above, it can be seen that not many comprehensive studies covering the 
entire road network of cities have been performed especially in the case of heterogeneous traffic flow 
conditions.

In the present study, it was found necessary to perform simulation trials based on observed video-
graphic data for calibration of Wiedemann-74 (1974) car-following model characteristics such as the 
minimum collision time-gain, time-between direction changes, minimum longitudinal speed, additive 
part of desired safety distance, multiplicative part of desired safety distance, minimum look-ahead 
distance, minimum look-back distance, minimum lateral clearance, and driver behavior, that are not 
easily measured in order to improve the prediction of traffic flows on the urban road network of 
Mangalore city. Additionally, traffic in Mangalore city is further characterized by a heterogeneous mix 
of slow and fast motorized vehicles and poor observance of lane-discipline similar to emerging tier-II 
cities in India.

In the multi-stage two-level calibration approach performed in this study, the values of the char-
acteristics were varied one at a time in a manner similar to the approach adopted by Mathew and 
Radhakrishnan (2010). However, the sensitivity analysis is performed using an ANN-based approach 
in the present study in contrast to a GA-based sensitivity analysis performed by Mathew and 
Radhakrishnan (2010) and Siddharth and Ramadurai (2013).

As part of this study, it was also proposed to adopt the use of measures of effectiveness such as 
the GEH statistic value, the mean absolute errors (MAE), and the RNSE values in order to indicate 
the accuracy of simulations based on observed and measured volumes of vehicles passing through 
18 mid-block sections of the road network. The existing guidelines for calibration of microsimula-
tion models formalized by Dowling et  al. (2004) and Park et  al. (2005), cater to the simulation 
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requirements of homogeneous traffic conditions. The present study will assist in evolving the frame-
work for heterogeneous traffic.

3. Details on the Study Area
Mangalore is a beautiful scenic city in the southern part of the State of Karnataka, India. It is an 
emerging city located at 12°51'55.4" N latitude and 74°50'24.7" E longitude, at an altitude of 22 
m above sea-level, and is well-connected by air, rail, and road. Mangalore City Corporation (MCC) 
witnessed an increase in population from 195,000 in 1971 to 488,968 in 2011 (Census, 2011) and is 
spread over 60 urban wards, covering an area of about 132.45 square km (MCC, 2015). The current 
population in the city is about 601173 (GoK, 2013), with a total road length of 1133.31km (MCC, 
2016).

The heterogeneous mix of vehicles in the city includes cars, light commercial vehicles (LCVs) with 
a gross vehicle weight of lesser than 7.5 metric tons, buses, auto-rickshaws, and motorized two-
wheelers. The average annual increase in the total number of vehicles during 2012-18 was about 
10.86%, while the total vehicle count stood at 676,920 in March 2018. Presently, the percentage of 
cars, motorized two-wheelers, auto-rickshaws, LCVs, buses, and trucks comprise 19%, 71%, 4%, 2%, 
1%, and 3% (GoK, 2018).

4. Data Collection
The present study included 423 links of road network spanning over 3.08 square km of Mangalore city 
connecting major junctions such as Hampankatta, Navbharat, PVS, Bunt’s Hostel, Jyothi, Bendoorwell, 
Balmatta, and St. Theresa’s School Junction. A few of these junctions are provided with fixed time 
traffic signals with manual override options to handle peak-hour traffic, while a majority of the junc-
tions are manually controlled.

Video-graphic data on vehicular movements at eight major traffic junctions of the city and at 18 
important mid-block sections of the road network were recorded for the peak-hour between 17.30-
18.30 hours, during 10-18 March 2015 on mid-week days. A net total of 16-minutes peak-hour data 
was considered for the development of VISSIM model. A 12-minute video-graphic data that consti-
tutes 75% of the data was used for testing, development, and calibration of VISSIM model, while a 
four-minute video-graphic data that constitutes 25% of the data was used for model validation.

As part of data collection efforts, additional video-graphic recordings of vehicular movements were 
used to determine the approximate speeds of randomly selected vehicles on selected road sections 
of the city. The acceleration values were also computed based on the initial and final speeds on road 
sections. It was proposed to use part of this information in assigning the desired speed distributions 
and the desired acceleration distributions.

4.1. Selection of Vehicle and Driver Characteristics and the Value 
Ranges for Preparation of Datasets
VISSIM comprises fifty vehicle and driver characteristics that can be refined and provides default 
values for the same. These vehicle and driver related characteristics can be simulated in various stages 
using a Monte Carlo approach or based on a deterministic simulation approach (Astarita and Giofré, 
2019).

In a Monte Carlo based approach, the vehicle and driver characteristics to be tested are randomly 
generated. Park and Schneeberger (2003) adopted the Latin-Hypercube (LH) method of sampling 
for preparation of the datasets and evaluated 54 or 625 combinations of datasets considering 4 
parameters and 5 value ranges. This approach can be considered similar to a stratified Monte Carlo 
sampling method where pairwise comparisons can be minimized.

The present study focuses on calibration of 14 vehicle and driver characteristics according to Wiede-
mann-74 (1974) car-following model over 14 operating value ranges. The vehicle types adopted in 
the present study include vehicles such as buses, cars, motorized two-wheelers, auto-rickshaws, and 
LCVs operating on Indian roads. The calibration of these vehicle and driver characteristics for a wide 
range of slow and fast motorized vehicles necessitates the use of a larger dataset where many more 
combinations of data need to be simulated. Due to this reason, it was considered ideal to adopt a 
deterministic simulation approach focusing on a smaller set of data. Moreover, it was proposed to 
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study the accuracy of predictions when one of the vehicle and driver characteristics are varied so that 
it would enable the ANN-based module to effectively determine the sensitivity of each of the charac-
teristics with respect to the other.

The data related to operating ranges of vehicle characteristics such as the distributions for the 
desired speed: lower bound, desired speed: upper bound, desired acceleration, maximum accel-
eration, and deceleration for each vehicle type used in India were specified in this study based on 
previous studies conducted by Mathew and Radhakrishnan (2010), Arasan and Krishnamurthy 
(2008), Manjunatha et al. (2013), Bains et al. (2013), and Mehar et al. (2014).

The operating ranges for driver characteristics related to minimum lateral clearance were arrived 
at based on Arasan and Krishnamurthy (2008), Manjunatha et al. (2013), and Bains et al. (2013) 
while the same for average standstill distance, minimum look-ahead distance, and minimum look-back 
distance were adopted based on previous studies performed by Mathew and Radhakrishnan (2010) 
and Siddharth and Ramadurai (2013).

The operating value ranges for minimum collision time-gain (or reaction time required to avoid 
collision while performing lateral movements), minimum longitudinal speed likely to be maintained 
for lane-change, additive and multiplicative part of desired safety distances between two vehicles, 
and time-between direction changes (for overtaking procedures) were assigned in the present study 
based on informal in-vehicle surveys with vehicle drivers in the city. Table 1 provides details on the 
operating value ranges for 14 vehicle and driver characteristics for the multi-stage first-level of cali-
brations performed in 14 major stages and 4 sub-stages involving 90 best performing simulation runs.

Table 1. Suggested Lower and Upper Bound Values for Vehicle and Driver Characteristics Used in 
Performing Simulation Trials in VISSIM.

Sl. No. Vehicle and Driver Characteristics
Operating Value 
Range

Best performing 
simulation runs

1 Minimum Lateral Clearance (m) 0.25 - 1.0 5

2a Distributions for Desired Acceleration (m/s2) 0.5 - 4.4 5

2b Distributions for Maximum Acceleration (m/s2) 1.0 - 4.4 5

2c Distributions for Deceleration (m/s2) 2.5 - 8.0 5

3a Distributions for Desired Acceleration (m/s2) 0.5 - 4.4 5

3b Distributions for Maximum Acceleration (m/s2) 1.0 - 4.4 5

4 Minimum Look-ahead Distance (m) 10 - 50 5

5 Distributions for Maximum Acceleration (m/s2) 1.0 - 4.4 5

6 Distributions for Desired Acceleration (m/s2) 0.5 - 4.4 5

7a Distributions for Desired Speed (kmph) - Lower Bound 21.9 - 72.3 5

7b Distributions for Desired Speed (kmph) - Upper Bound 21.9 - 72.3 5

8 Minimum Look-back Distance (m) for car-following 10.0 - 50.0 5

9 Average Standstill Distance (m) for car-following 0.5 - 2.5 5

10
Additive Part of Desired Safety Distance (m) for car-
following 0.2 - 2.0 5

11
Multiplicative Part of Desired Safety Distance (m) for car-
following 0.2 - 3.0 5

12 Time-between Direction Changes (s) for overtaking 1.0 - 10.0 5

13 Minimum Longitudinal Speed (kmph) for lane change 1.1 - 3.6 5

14
Minimum Collision Time-gain for lateral driving behavior 
(s) 0.40 - 2.0 5

Total simulation runs in the first-level calibrations 90

Source: Authors own creation.
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5. Methodology Adopted in this Study
The following sub-sections provide descriptions on the methodology adopted in various phases of 
work undertaken in this study. Details on the creation of a high-resolution map of the city, prelimCinary 
steps in model development in VISSIM, measures of effectiveness adopted for the study, identification 
of the best random seed, first-level of calibrations, ANN-based sensitivity analysis, second-level of 
calibrations, and validation of the model are discussed below.

5.1. Creation of a High-resolution map for the city
An AutoCAD drawing with details on the road geometrics, widths of the road links, and dimensions 
of the junctions was prepared based on measurements made at various locations in the city. For the 
road-stretches of the city that remained unchanged for the past decade, the information contained 
in drawings prepared previously by Dalal Consultants and Engineers (2003) were used to update 
AutoCAD drawing in 2015.

Additionally, a high resolution .jpg digitized base-map (of 6284 x 6726-pixel size and 3.43MB size) 
of the city was developed to a scale of 1:5000. AutoCAD drawing prepared earlier in 2015 was then 
overlaid on the digitized base-map in AutoCAD, and re-aligned to ensure a perfect match. The .jpg 
base-map along with the re-aligned AutoCAD drawing was then saved as a composite .dwg image as 
shown in Figure 1.

Figure 1. AutoCAD Drawing Interfaced with High-Resolution Map of Mangalore City.

Source: Authors own creation.

Notes: This figure was created in gimp to a scale of 1:5000 and interfaced with AutoCAD drawing.
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5.2. Preliminary steps in model development and measures of 
effectiveness
The composite .dwg file created in the previous step was then uploaded to VISSIM using the back-
ground option. This background was used as a template in VISSIM for drawing the links and connec-
tors for the road network of the study area.

It was planned to adopt Wiedemann-74 (1974) car-following behavior for modeling driving 
behavior on urban roads with merging traffic in this study. The values for driver and vehicle character-
istics were set to default values in VISSIM at the beginning of the simulation run.

As part of the preliminary steps in the model development exercise, it was also required to identify 
the best random seed from among commonly used random seeds for microsimulation using measures 
of effectiveness such as GEH statistic, RNSE, and mean absolute error (MAE) in the prediction of 
traffic volumes. The accuracy of prediction for traffic volumes at 18 mid-block sections spread over 
the city was used for this purpose. The expression for GEH statistic is given as (DMRB, 1996; Smith 
and Blewitt, 2010),

	﻿‍ GEH = [2 (M − C) 2 / (M + C)] 0.5
‍� (1)

where, M is the hourly traffic volume predicted or simulated by the traffic model, and C is the 
observed hourly traffic count.

According to UKDoT (2014) and WSDoT (2014), GEH statistic value of lesser than 5.0 for atleast 
85% of the road links calibrated is considered to provide a good fit in addition to the requirement that 
the individual link-flows must have a predictive accuracy of 15% in atleast 85% of the road links that 
have traffic flows between 700 and 2700 vehicles per hour.

Alternatively, the statistic RNSE (root normalized squared error), a modified form of GEH statistic 
is also used by various agencies including Wisconsin-DoT (2005). The RNSE statistic is expressed as,

	﻿‍ RNSE = [(M − C) 2 / C] 0.5
‍� (2)

Figure 2. A Pictorial Representation of Observed and Predicted Volumes at 18 mid-block Sections Using Random 
Seeds 25, 28, 42, and 50.

Source: Authors own creation.

Notes: Preliminary trial runs using random seeds 1 to 50 were performed to identify the most ideal random seed for simulation as 
part of the present study. However, the results were not recorded for other random seeds due to the reason that the simulations 
resulted in higher mean absolute errors (MAEs).
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5.3. Procedure adopted for identification of the best random seed for 
simulation
Preliminary trial runs using random seeds 1 to 50 were performed to identify the most ideal random 
seed for simulation as part of the present study. Here, it was observed that random seeds 25 and 
42 provided lesser prediction errors for simulations in Mangalore city. Figure  2 illustrates details 
on the results of trials conducted using random seeds 25, 28, 42, and 50 where the mean absolute 
errors (MAE) in the prediction of traffic flows at 18 mid-block sections were found to be lower. Simu-
lation experiments reported by various researchers (Wang et al., 2012; Ishaque and Noland, 2005; 
Kamdar, 2004; TJPDC, 2007; Arkatkar et al., 2016) based on numerous trials also indicate that the 
use of random numbers 25, 28, 42, and 50 provide reliable estimates of the actual values.

The trial runs indicated that simulations using random seeds 42 and 25 resulted in lower mean 
absolute errors (MAE) of 33.4% and 33.4% respectively when simulated with default values in VISSIM. 
Also, the corresponding GEH statistic values were computed as 7.06 and 7.02 respectively for random 
seeds 42 and 25. However, the random seed 42 was used for calibrations since Wang et al. (2012) 
observed that the use of random seeds higher than 25 could result in lesser standard errors. PTV 
(2014) also recommends the use of random seed 42 especially in the studies related to predicting 
inter-arrival time of vehicles. Additionally, it was observed in the present study that performing trial 
runs for random seed greater than 50 resulted in higher prediction errors. In the light of the above 
references and also based on simulations performed for random seeds 1-50, it may be considered that 
the likely set of best performing random variables has been evaluated. Thus, the selection of random 
seed and the calibration of vehicle and driver characteristics are based on a deterministic approach in 
this study. Liu (2002) too recommends that simulation trials may be performed using a selected set 
of random seeds in order to achieve the desired results. A similar approach has been adopted in this 
study.

On the other hand, Monte Carlo simulations depend upon the use of random numbers to identify 
a set of stochastic combinations of characteristics to be tested (Newman and Barkema, 1999). But 
such approaches are found to be useful in situations where the number of characteristics to be evalu-
ated and the value ranges are within reasonable limits (Mattis, 1976). Also, the results obtained using 
Monte Carlo approaches may not be reliable or may involve more number of trials according to Park 
and Miller (1988).

5.4. The multi-stage first-level of calibrations
As part of the multi-stage first-level of calibrations, fine-tuning of vehicle and driver characteristics was 
performed in 14 major stages with sub-stages in the 2nd, 3rd, and the 7th stages. The sequence of 
selection of characteristics to be refined or fine-tuned in each stage was arrived at based on a number 
of informal trial runs. The calibrations were performed in a manner to ensure that the accuracy of 
predicting traffic volumes at 18 mid-blocks of the city improved when measured based on the mean 
absolute error, GEH statistic, and RNSE. The details on various stages of refinement for the vehicle 
and driver characteristics are summarized below:

•	 Stage 1 - Assigning minimum lateral clearances between vehicles for various vehicle types.
•	 Stage 2a - Assigning acceptable desired acceleration distributions for various vehicle types.
•	 Stage 2b - Assigning acceptable maximum acceleration distributions for various vehicle types.
•	 Stage 2c - Assigning acceptable deceleration distributions for various vehicle types.
•	 Stage 3a - First series of Refinement in the acceptable desired acceleration distributions for 

various vehicle types.
•	 Stage 3b - First series of Refinement in the acceptable maximum acceleration distributions for 

various vehicle types.
•	 Stage 4 - Assigning minimum look-ahead distances for each vehicle type as part of car-following 

characteristics.
•	 Stage 5 - Second series of refinement in the maximum acceleration distributions for various 

vehicle types.
•	 Stage 6 - Second series of refinement in the desired acceleration distributions for various vehicle 

types.
•	 Stage 7a - Assigning desired speed: lower bounds for speed distributions of each vehicle type.
•	 Stage 7b - Assigning desired speed: upper bounds for speed distributions of each vehicle type.
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•	 Stage 8 - Assigning minimum look-back distances as part of car-following characteristics for 
various vehicle types.

•	 Stage 9 - Assigning average standstill distances as part of car-following characteristics for 
various vehicle types.

•	 Stage 10 - Refining the value of additive part of desired safety distance as part of car-following 
characteristics for various vehicle types.

•	 Stage 11 - Refining the value of multiplicative part of desired safety distance as part of car-
following characteristics for various vehicle types.

•	 Stage 12 - Assigning values of time-between direction changes for overtaking for various vehicle 
types.

•	 Stage 13 - Refining the value of minimum longitudinal speed as part of lane change behavior 
for various vehicle types.

•	 Stage 14 - Refinement of minimum collision time-gain as part of lateral driving behavior for 
various vehicle types.

The details on the changes made to each of the vehicle and driver characteristics at each of the 
best performing simulation runs, along with the corresponding mean absolute errors (MAE) were 
provided as an input to ANN-based sensitivity analysis module. This approach was considered to be 
ideal in the present study as it would enable the ANN to easily identify the relative importance or 
sensitivity of each of the characteristics with respect to the other.

5.5. Approach to sensitivity analysis of vehicle and driver 
characteristics
Sensitivity analysis assists in evaluating the efficacy of various strategies adopted on the predictive 
capability of the model. This will further help in understanding the relative influence of various vehicle 
and driver characteristics on the performance of the model. The results of the sensitivity analysis can 
be used in the second-level of calibrations in order to fine-tune the model.

Traditionally, in elasticity-based approaches, sensitivity is measured as the ratio between the change 
in the dependent variable (or the value of the final objective function) and the change in the value of 
an independent variable (or the value of a chosen characteristic). Sensitivity can thus be expressed as,

	﻿‍ es = Percentage of Reduction ∈ Mean Absolute Error
Percentage of Change ∈ Value of the Independent Variable‍� (3)

In the present study, ANN-based approach was considered for the analysis of sensitivity as ANNs 
are capable of capturing the underlying relationships more effectively when compared to other 
approaches (Lippmann, 1987; Scarborough and Somers, 2006; Dreiseitl and Ohno-Machado, 
2002; WiscCS, 1989).

Rao et al. (1998) adopted ANN-based approach for assessing the sensitivity of various input vari-
ables in mode-choice modeling, where the weight-partition method as explained by Garson (1991) 
was used. Here, it was observed that the results obtained were almost similar to those determined 
using the multinomial logit model (MNL) approach.

Kalteh (2008) adopted a similar approach in the study of relative importance of variables that 
contributed to the prediction of rainfall-runoff using ANN. Feng et  al. (2011) too observed that 
Garson’s algorithm could be used in identifying the variables that influenced route-choice selection 
that resulted in predictions close to 97.4% accuracy. Shafabakhsh et al. (2015) adopted the above 
approach in the determination of factors influencing the thickness of pavements. However, the appli-
cation of such approaches in the field of microsimulation and traffic engineering seems to be limited.

The Garson’s algorithm (1991) has been observed to be widely adopted in determining the rela-
tive importance of input variables for ANN structures with a single hidden layer in addition to the 
alternative approaches recommended by Gevrey et al., 2003; Gevrey et al., 2006 and Olden and 
Jackson (2002). Özesmi and Özesmi (1999) suggested a more robust approach that could handle 
complex ANN structures with one, two or more hidden layers.

Equation (4) provides details on the formulae adopted in computing the relative importance of 
input variables based on the method recommended by Özesmi and Özesmi (1999). It is observed 
that a similar approach is adopted in the computations made as part of the EasyNN-plus software.

	﻿‍ Ri = (Ii,j /
∑n

i=1 Ii,j) × 100‍� (4)
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where, Ri = relative importance (%) of the ith neuron representing the ith input variable; 

‍Ii,j =
∑m

j=1(Wi,j)2; Ii,j‍ = importance of the ith input variable when computed considering outputs to the jth 
neuron in the hidden layer; Wi,j = connection weight from the ith input neuron to the jth hidden neuron; n 
= number of input neurons representing the input variables; m = number of neurons in the hidden layer.

In other words, according to Özesmi and Özesmi (1999), the relative importance of the input 
variable is equal to the sum of squares of connection weights destined to other neurons from the ith 
input variable, divided by the sum of squares of such weights for all the input variables. The present 
study proposes the application of this approach for the measurement of sensitivity (or the relative 
importance of vehicle and driver characteristics).

5.5.1. Preparation of datasets for ANN-based sensitivity analysis
Based on the simulations performed in the first-level of calibrations as explained in the above sections, 
information on the changes made to the vehicle and driver characteristics and the corresponding 
changes in the mean absolute errors (MAE) over 91 calibration runs including the first simulation run 
with default values and the simulation runs for the 14 major stages and the sub-stages were tabulated.

The values tabulated for the 91 rows of data were then normalized based on the minimum and 
maximum value ranges to lie between 0 and 1 respectively. Here, it may be observed that although 
the simulations were performed by assigning different values for the desired speed: lower and upper 
bounds for speed distributions for various vehicle types, only the weighted average of the values were 
used while tabulating the data. In this connection, it may be noted that the percentages of motorized 
two-wheelers, auto-rickshaws, trucks, cars, buses, and LCVs in the road network were 47.3%, 18.1%, 
0.2%, 27%, 5.8%, and 1.6% respectively. A partial listing of the normalized database used for training 
the ANN model is provided in Table 2.

5.5.2. Determination of the ideal configuration for ANN model
The above-mentioned database with normalized values was used to train the ANN using EasyNN-
plus software. ANN model was initially formulated with 14 neurons in the input layer to represent 14 
vehicle and driver characteristics, 15 neurons in a single hidden layer, and 1 neuron in the output layer 
to represent the mean absolute error in simulation. ANN was required to learn the pattern of distribu-
tion of mean absolute errors for the 91 rows of normalized data.

The difference between the modeled error-values predicted using ANN and the actual mean abso-
lute errors given as input were required to be lesser by specifying a target error of lesser than 0.1 for 
all the rows of dataset in EasyNN-plus software. Additionally, the maximum number of training cycles 
was set to 50,000. The software automatically optimized the learning rate to 0.7 and momentum to 
0.8 in the training phase in this study.

In the later stages, an ANN was tested for various configurations by altering the number of neurons 
in the hidden layers, and also by varying the number of hidden layers in order to determine the ideal 
configuration. Details on the tests performed using EasyNN-plus for various configurations of ANN 
are provided in Table  3 along with the prediction errors and number of training cycles taken for 
convergence.

Here, it can be found that the ideal configuration for ANN model comprises 14 neurons in the 
input layer, 12, 8, and 4 neurons respectively in the first, second, and the third hidden layers and one 
neuron in the output layer. For this configuration, the mean absolute error for ANN was found to be a 
minimum of 2.94% when ANN was trained for 5261 cycles.

5.6. The three-stage second-level of calibration
As part of the second-level of calibrations, driver characteristics such as the average standstill distance 
and the minimum look-ahead distance, and the vehicle characteristic of desired speed: lower bounds 
were fine-tuned in three major stages over a total of 45 simulation runs aimed at achieving better 
predictions of traffic volumes.

5.7. Model validation
The best vehicle and driver characteristics identified based on the first-level of calibrations, along with 
the refinements made in the second-level of calibrations were used in validating the VISSIM model. 
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Table 3. Details on Tests for Identifying the Ideal ANN Configuration.

Test Serial 
No.

Number of Neurons in the Hidden Layers
Mean Absolute 
Error (MAE) in 
Prediction
(%)

Number of 
training cycles 
for convergence

Hidden
Layer
No: 1

Hidden
Layer
No: 2

Hidden
Layer
No: 3

1 15 0 0 3.8075 10751

2 14 0 0 3.7303 11407

3 13 0 0 3.9456 10276

*4 12 0 0 3.0979 11184

5 11 0 0 3.7925 11265

6 10 0 0 3.4415 10138

7 9 0 0 3.2023 11312

8 8 0 0 3.7263 10015

9 7 0 0 3.4304 10864

10 6 0 0 3.7916 10319

11 5 0 0 3.7277 9677

12 4 0 0 3.7169 6234

13 12 12 0 3.6959 5407

14 12 11 0 3.4819 4803

15 12 10 0 3.8747 3468

16 12 9 0 3.8354 6072

*17 12 8 0 3.4290 4021

18 12 7 0 3.4600 3548

19 12 6 0 3.6131 2984

20 12 5 0 4.3240 1353

21 12 4 0 3.9310 4506

22 12 3 0 5.4365 1231

23 12 2 0 5.3433 4619

24 12 8 8 3.5013 6229

25 12 8 7 3.0347 7672

26 12 8 6 3.5135 9181

27 12 8 5 4.2408 2670

*28 12 8 4 2.9404 5261

29 12 8 3 4.0352 2314

30 12 8 2 3.0703 16403

31 12 8 1 4.4979 3347

Source: Authors own creation.
Note: *Optimum ANN configurations for neurons organized in 1, 2, or 3 hidden layers. Target error = 0.1; Learning 
rate = 0.7; Momentum rate = 0.8; Number of neurons in the input layer = 14; Number of neurons in the output 
layer = 1.
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The validation exercise was performed on 25% of the video-graphic data recorded for 18 mid-block 
sections of the city.

6. Results and Discussions on Calibration, Sensitivity 

Analysis, and Validation
The following sub-sections provide details on the results of the first-level of calibrations (performed 
in 14 major stages), sensitivity analysis, the second-level of calibrations (performed in three major 
stages), and the validation of simulation model.

6.1. Results and discussions on the first-level of calibrations
An initial test-run using random seed 42 which was identified as the best random seed was performed 
in VISSIM with default values assigned to the vehicle and driver characteristics. A number of informal 
trial runs were conducted by fine-tuning vehicle and driver characteristics before commencing the 
first-level of calibrations. The best sequence of refinement of various vehicle and driver characteristics 
was then evolved using a trial and error approach.

In Stage 1 of the first-level of calibrations, the minimum lateral clearance for each type of vehicle 
was assigned based on the recommendations provided by Arasan and Krishnamurthy (2008), 
Manjunatha et al. (2013), and Bains et al. (2013). In Stages 2a, 2b, and 2c of refinement, the values 
associated with the distributions for desired accelerations, maximum accelerations, and decelerations 
respectively were set for each vehicle-type as a part of refining vehicle characteristics using a trial and 
error method considering values adopted and modified based on Arasan and Krishnamurthy (2008). 
After these stages of refinements, the mean absolute error remained stable at around 33.4% and the 
GEH statistic also remained unchanged at 7.06.

In Stages 3a and 3b, the distributions for desired accelerations and maximum accelerations respec-
tively were refined as a part of vehicle characteristics considering values adopted and modified based 
on Mathew and Radhakrishnan (2010), Mehar et al. (2014), and Bains et al. (2013). Through these 
refinements, the mean absolute error reduced from 33.4% to 32.9% and the GEH statistic decreased 
marginally from 7.06 to 6.94.

In Stage 4, the value associated with the minimum look-ahead distance was assigned as part of 
driver characteristics and the best value for vehicles plying on the city roads was identified as 40m. 
The mean absolute error at this stage reduced from 32.9% to 29.5% and the GEH statistic reduced 
significantly from 6.94 to 6.14 indicating that the assigned value improved significantly.

In Stage 5, the values associated with the distributions for maximum accelerations were further 
refined to increase the accuracy of prediction. At this stage, the mean absolute error reduced from 
29.5% to 27.5%, and the GEH statistic reduced from 6.14 to 5.82. In Stage 6, the values associated 
with the distributions for desired accelerations were further refined to tally with the actual on-field 
acceleration conditions. Here, the mean absolute error reduced slightly from 27.5% to 27.2%, and the 
GEH statistic showed a minor reduction from 5.82 to 5.63.

In Stages 7a and 7b of refinement, the values related to the desired speed: lower and upper 
bounds for speed distributions of various vehicle types were assigned considering values adopted 
and modified based on Arasan and Krishnamurthy (2008). In these stages, the mean absolute error 
reduced from 27.2% to 24.5%, and the GEH statistic showed a reduction from 5.63 to 5.12, signifying 
a moderate improvement in the prediction of traffic volumes.

In Stage 8, the value associated with the minimum look-back distance was assigned as part of fine-
tuning driver characteristics. At this stage, the best value for the minimum look-back distance of 30m 
was arrived at for vehicles plying on the city roads. The mean absolute error reduced from 24.5% to 
22.4%, and the GEH statistic reduced from 5.12 to 4.65.

In Stage 9, the value related to the average standstill distance was assigned as part of driver char-
acteristics and the best value for vehicles plying on the city roads was identified as 1m. The mean 
absolute error reduced from 22.4% to 20.1% and the GEH statistic reduced from 4.65 to 4.08. In 
Stage 10, the additive part of desired safety distance was refined to 0.4m as part of fine-tuning driver 
characteristics. At this stage, the mean absolute error reduced from 20.1% to 13.8% and the GEH 
statistic reduced from 4.08 to 2.74, showing a significant improvement in the accuracy of predictions.
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In Stage 11 of refinement, the multiplicative part of desired safety distance was refined to 0.5m 
as part of fine-tuning driver characteristics. Here, the mean absolute error was found to reduce from 
13.8% to 10.3% and the GEH statistic displayed a significant reduction from 2.74 to 2.0. In Stage 12, 
the time-between direction changes was refined to 5seconds as part of fine-tuning driver character-
istics. The mean absolute error was found to be unchanged at around 10.3% while the GEH statistic 
reduced slightly from 2.05 to 2.01.

In Stage 13, the minimum longitudinal speed (required for lateral movement) was refined to 
1.9kmph as part of fine-tuning driver characteristics. The mean absolute error reduced from 10.3% to 
10.2% and the GEH statistic reduced from 2.0 to 1.97.

Finally, in Stage 14 of refinement, the minimum collision time-gain was fine-tuned to 0.57 seconds 
as part of driver characteristics. The mean absolute error reduced from 10.2% to 9.6% and the GEH 
statistic reduced from 1.97 to 1.89 as in Table 4 for the final stage of refinement.

Table 5 provides a summary of the mean absolute errors and the values of the mean GEH statistic 
at each stage of refinement in the calibration procedure, while Figure 3 provides a pictorial represen-
tation of the same. The summary of the values of vehicle and driver characteristics at the end of the 
first-level of calibrations are provided in Table 6.

6.2. Results and discussions on ANN-based sensitivity analysis
In the present study, it was proposed to perform an ANN-based sensitivity analysis that provides 
details on the relative importance of vehicle and driver characteristics that influenced the prediction-
errors in simulation. Since the structure used in an ANN study comprises three hidden layers, the 
algorithm suggested by Özesmi and Özesmi (1999) was employed for computation of sensitivity. 

Table 4. Details of MAE, GEH, and RNSE at 18 Mid-Block Sections after Stage 14 of First-Level of 
Calibrations.

Direction of Traffic Flow
Simulated 
volume

Observed 
volume

Absolute 
Error (%)

GEH
Statistic

RNSE 
StatisticFrom To

Jyothi Hampankatta 465 516 9.9 2.30 2.25

Hampankatta Jyothi 431 464 7.1 1.56 1.53

PVS Bunts 282 293 3.8 0.65 0.64

Bunts PVS 239 301 20.6 3.77 3.57

Navabharat PVS 441 502 12.2 2.81 2.72

PVS Navabharat 464 474 2.1 0.46 0.46

Hampankatta Navabharat 382 445 14.2 3.10 2.99

Navabharat Hampankatta 357 420 15.0 3.20 3.07

Jyothi Bunts 343 404 15.1 3.16 3.03

Bunts Jyothi 378 394 4.1 0.81 0.81

Jyothi Balmatta 315 366 13.9 2.76 2.67

Balmatta Jyothi 476 517 7.9 1.84 1.80

Balmatta St. Theresa 132 142 7.0 0.85 0.84

St. Theresa Balmatta 174 161 8.1 1.00 1.02

Bendoorwell Balmatta 270 291 7.2 1.25 1.23

Balmatta Bendoorwell 275 336 18.2 3.49 3.33

Bendoorwell St. Theresa 241 241 0.0 0.00 0.00

St. Theresa Bendoorwell 205 220 6.8 1.03 1.01

MAE 9.6 1.89 1.83

Source: Authors own creation.
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The computed values of the relative importance 
of vehicle and driver characteristics are summa-
rized in Table 7.

Based on these computations, it can be 
summarized that the average standstill distance, 
the minimum look-ahead distance, and the 
desired speed: lower bounds for speed distribu-
tions that possess relative importance values of 
36.03%, 29.08%, and 10.02% have a significant 
influence on the mean absolute errors (MAE).

6.3. Results and discussions on 
the three-stage second-level 
calibrations
Based on the observations made in the analysis 
of sensitivity, in Stage 1 of the second-level of 
calibrations, the value of the average standstill 
distance was modified and assigned as 0.4m for 
all vehicles. At this stage, the mean absolute error 
reduced from 9.6% to 8.0% and the GEH statistics 
reduced from 1.89 to 1.53.

In Stage 2, the value of the minimum look-
ahead distance for each vehicle type was modi-
fied. The final values assigned were 20m for 
auto-rickshaws and motorized two-wheelers, 25m 
for cars and light commercial vehicles (LCVs), and 
30m for buses and trucks. At this stage, the mean 
absolute error reduced from 8.0% to 7.8% and 

the GEH statistic reduced from 1.53 to 1.51.
In Stage 3, the values of the desired speed: lower bounds for speed distributions for motorized 

two-wheelers, auto-rickshaws, trucks, and LCVs were assigned as 30 kmph, while the same for cars and 

Table 5. Summary of the MAE and the GEH at 
each Stage of Refinement in the First-Level of 
Calibrations.

Stages of Refinement

Mean Absolute 
Errors at the end of 
the stages (%)

Mean
GEH 
Statistic

Initial trial (default value) 33.4 7.06

Stage 1 33.4 7.06

Stages 2a, 2b, and 2c 33.4 7.06

Stages 3a and 3b 32.9 6.94

Stage 4 29.5 6.14

Stage 5 27.5 5.82

Stage 6 27.2 5.63

Stages 7a and 7b 24.5 5.12

Stage 8 22.4 4.65

Stage 9 20.1 4.08

Stage 10 13.8 2.74

Stage 11 10.3 2.05

Stage 12 10.3 2.01

Stage 13 10.2 1.97

Stage 14 9.6 1.89

Source: Authors own creation..

Figure 3. A Pictorial Representation of the Reduction in MAEs for Various Stages of Calibration Using Random 
Seed 42.

Source: Authors own creation.
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buses were assigned as 35 kmph and 38 kmph respectively. After incorporating the above changes, 
the mean absolute error reduced from 7.8% to 7.7% and the GEH statistic reduced from 1.51 to 1.49. 
It may be observed that fifteen trial runs were performed at each of the above stages. In the last two 
stages of the second-level of calibrations, it can be found that the improvement in the accuracy of 
predictions is only marginal.

While comparing the results of the first and the second-levels of calibration, it can be found that 
the mean absolute error (MAE) in predictions reduced from 9.6% in the first-level of calibrations to 
7.7% in the second-level. Also, the values of the GEH statistic reduced from 1.89 to 1.49. This indi-
cates that there is a considerable improvement in the accuracy of prediction.

6.4. Results and discussions on the Validation of the VISSIM model
In order to perform the validation, the vehicle and driver characteristics finalized at the end of the first 
and second-levels of calibrations as summarized in Table 6 (cited in Section 6.1 above), were used in 
performing simulations in VISSIM. The validation was performed on 25% of the video-graphic data 
kept apart for the same as explained earlier.

Table  8 provides a summary of the computations for predicted errors based on the simulated 
volumes at 18 mid-blocks of the city for the validated VISSIM model. Here, it can be found that the 

Table 6. Summary of Values of Vehicle and Driver Characteristics at the End of First and Second-
Levels of Calibrations.

Sl. 
No. Vehicle and Driver Characteristics

Calibrated Value

Car MTW
Auto-
rickshaw LCV Bus Truck

Vehicle and Driver Characteristics at the End 
of First Level of Calibrations

1  � Minimum Lateral Clearances (m) 0.5 0.5 0.5 0.5 0.5 0.5

2  � Desired Accelerations at 50kmph (m/s2) 1.7 1.6 0.5 0.7 0.5 0.4

3  � Maximum Accelerations at 50kmph (m/s2) 1.8 1.7 0.6 0.8 0.7 0.7

4  � Deceleration Distributions (m/s2) 2.8 2.8 2.4 2.1 2.2 1.8

5  � Desired Speed: Lower Bounds (kmph) 35 30 30 38 37 30

6  � Desired Speed: Upper Bounds (kmph) 70 60 55 68 65 60

7  � Minimum Look-ahead distances (m) 40 40 40 40 40 40

8  � Minimum Look-back distances (m) 30 30 30 30 30 30

9  � Average Stand Still Distances (m) 1.0 1.0 1.0 1.0 1.0 1.0

10
 � Additive Part of Desired Safety Distances 

(m) 0.4 0.4 0.4 0.4 0.4 0.4

11
 � Multiplicative Part of Desired Safety 

Distances (m) 0.5 0.5 0.5 0.5 0.5 0.5

12  � Time-Between Direction Changes (s) 5.0 5.0 5.0 5.0 5.0 5.0

13  � Minimum Longitudinal Speeds (kmph) 1.9 1.9 1.9 1.9 1.9 1.9

14  � Minimum Collision Time-gains (s) 0.57 0.57 0.57 0.57 0.57 0.57

Vehicle and Driver Characteristics Revised at the End of Second Level of Calibrations

1  � Average Stand Still Distance (m) 0.4 0.4 0.4 0.4 0.4 0.4

2  � Minimum Look-ahead distance (m) 25 20 20 25 30 30

3  � Desired Speed: Lower Bounds (kmph) 35 30 30 30 37 30

Source: Authors own creation.
Notes. MTW = Motorized two- wheelers, LCV = Light commercial vehicles of gross weight lesser than 7.5 metric 
tonnes.
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mean absolute error of prediction is 13.7%, the 
mean GEH statistic is 1.51, and the RNSE value 
is 1.47.

7. Conclusions
Simulation approaches to modeling urban traffic 
are adopted due to the reason that the develop-
ment of analytical models is cumbersome consid-
ering the involvement of a number of vehicle and 
driver characteristics that also depend to a large 
extent on the proportion of slow and fast motor-
ized vehicles, the operating volumes and speeds, 
and the level of congestion. Additionally, micro-
simulation based approaches are found to be 
more suitable in analysing the interplay between 
various interacting variables, especially in the 
study of flow of vehicles through the bottlenecks 
in the road network of the city.

The first-level of calibrations for VISSIM-based 
microsimulation model developed in this study 
was performed in 14 major stages with 4 sub-
stages, starting with the assigning of default 
values for vehicle and driver characteristics, and 
systematically making changes to ensure that the 
accuracy of prediction improved with each stage 
as illustrated in Figure 3. The second-level of cali-
brations were performed based on the observa-
tions made in ANN-based sensitivity analysis. The 
following are the important conclusions related 
to calibration, sensitivity analysis, and validation 

performed in this study:

•	 After performing the first-level of calibrations that ended in Stage 14, it was observed that in 
most of the 18 mid-block locations, the mean absolute error in prediction was much lesser than 
15%, and the mean GEH statistic was lesser than 5.0. Although these observations satisfy the 
criteria for calibration specified by UKDoT (2014) and WSDoT (2014), it was considered ideal 
to perform a second-level of calibrations based on ANN-based sensitivity analysis in order to 
further improve the accuracy of predictions.

•	 An ANN-based sensitivity analysis of vehicle and driver characteristics was performed as part 
of the study, which revealed that the average standstill distance, the minimum look-ahead 
distance, and the desired speed: lower bounds for speed distributions with the relative impor-
tance values of 36.03%, 29.08%, and 10.02% as in Table 7 influenced the prediction accuracy of 
the VISSIM model in the second-level of calibrations. It was also found that further fine-tuning 
in the values of characteristics such as the additive part of desired safety distance, minimum 
look-back distance, desired accelerations at the desired speeds, maximum accelerations at the 
desired speeds, and the multiplicative part of desired safety distance did not yield any further 
improvement in the accuracy of predictions.

•	 A comparison of the first and the second-levels of calibrations indicate that there is a significant 
improvement in the accuracy of predictions as the mean absolute error (MAE) shows a reduction 
from 9.6% in the first-level of calibrations to 7.7% in the second-level of calibrations, and as the 
GEH statistic shows a reduction from 1.89 to 1.49.

•	 The validation of the model performed using 25% of the video-graphic data kept apart for the 
same showed a mean absolute error of 13.7%, with the mean GEH statistic value at 1.51, and 
the mean RNSE value at 1.47. The RNSE values were found to be much lesser than 3.0 for more 
than 85% of the mid-block sections validated which satisfied the requirements stipulated by the 
Wisconsin DoT (2005).

Table 7. Computed Values of the Relative 
Importance of the Vehicle and Driver 
Characteristics Based on Sensitivity Analysis.

Vehicle and Driver Characteristics

Final Computed 
Values of Relative 
Importance
(%)

Average Standstill Distance (m) 36.03346781

Minimum Look-ahead Distance (m) 29.08247098

Desired Speed: Lower Bounds (kmph) 10.01939929

Additive Part of Desired Safety Distance 
(m) 6.018405862

Minimum Look-back Distance (m) 5.82585454

Desired Acceleration at Desired Speed of 
50 kmph (m/s2) 4.047062691

Maximum Acceleration at Desired Speed 
of 50 kmph (m/s2) 3.425829983

Multiplicative Part of Desired Safety 
Distance (m) 1.990901583

Minimum Longitudinal Speed (kmph) 1.139688108

Minimum Collision Time-gain (s) 1.118960391

Desired Speed: Upper Bounds (kmph) 0.641713873

Minimum Lateral Clearance (m) 0.307529776

Time-Between Direction Change (s) 0.276678493

Deceleration Distribution (m/s2) 0.072036627

Source: Authors own creation.
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Table 9 provides a summary of final calibrated values for the vehicle and driver characteristics 
refined after the end of the second-level of calibrations in VISSIM for Mangalore city. The table also 

Table 9. Calibrated Values for Characteristics later Refined at the End of the Second-Level of 
Calibrations, along with Comparisons to Related Studies in India, and Suggested Value Ranges for 
Simulation Trials.

Vehicle and Driver 
Characteristics

Suggested Values Ranges for Simulation
Calibrated Values after Second Level of 
Calibrations

Siddharth and 
Ramadurai 
(2013)*

Mathew and 
Radhakrishnan 
(2010)†

The
Present 
Study‡

Siddharth and 
Ramadurai 
(2013)*

Mathew and 
Radhakrishnan 
(2010)†

The
Present 
Study‡

Minimum Look-ahead
Distances (m) 10 - 30 - 10 - 50 27.91 - 20§, 25§, 30§

Minimum Look-back 
Distances (m) 10 - 30 - 10 - 50 14.31 - 30

Average Standstill
Distances (m) 1.0 - 2.0 0.0 - 4.0 0.5 - 2.5 1.0 1.33 0.4

Additive Part of Safety 
Distances (m) 0.1 - 2.0 0.0 - 4.0 0.2 - 2.0 0.2 0.28 0.4

Multiplicative Part of Safety 
Distances (m)

0.0 - 3.0 0.0 - 5.0 0.2 - 3.0 0.78 0.16 0.5

Source: Authors own creation.

*Based on studies performed in Chennai city, India.
†Based on studies performed in Trivandrum city, India.
‡Based on studies performed in Mangalore city, India.
§Minimum look-ahead distance of 20m for motorized two-wheelers and auto-rickshaws, 25 for cars and LCVs, 30 for buses and trucks.

Table 8. Details of MAE, GEH, and RNSE at 18 Mid-Block Sections for the Validated Model.

Direction of Traffic Flow
Simulated 
Volume

Observed 
Volume

Absolute 
Error (%)

GEH 
Statistic

RNSE 
StatisticFrom To

Jyothi Hampankatta 155 153 1.3 0.16 0.16

Hampankatta Jyothi 146 167 12.6 1.68 1.63

PVS Bunts 85 95 10.5 1.05 1.03

Bunts PVS 77 94 18.1 1.84 1.75

Navabharat PVS 147 164 10.4 1.36 1.33

PVS Navabharat 129 184 29.9 4.40 4.05

Hampankatta Navabharat 135 154 12.3 1.58 1.53

Navabharat Hampankatta 117 105 11.4 1.14 1.17

Jyothi Bunts 122 157 22.3 2.96 2.79

Bunts Jyothi 136 108 25.9 2.54 2.69

Jyothi Balmatta 106 115 7.8 0.86 0.84

Balmatta Jyothi 169 155 9.0 1.10 1.12

Balmatta St. Theresa 46 52 11.5 0.86 0.83

St. Theresa Balmatta 61 50 22.0 1.48 1.56

Bendoorwell Balmatta 99 91 8.8 0.82 0.84

Balmatta Bendoorwell 96 110 12.7 1.38 1.33

Bendoorwell St. Theresa 95 87 9.2 0.84 0.86

St. Theresa Bendoorwell 70 79 11.4 1.04 1.01

MAE 13.7 1.51 1.47

Source: Authors own creation.
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provides comparisons to similar studies performed in India.
Here, it can be observed that the calibrated value for the minimum look-ahead distance was 27.91m 

for the study performed in Chennai city (Siddharth and Ramadurai, 2013), while in the present study, 
it was found to be 20m for motorized two-wheelers and auto-rickshaws, 25m for cars and LCVs, 
and 30m for buses and trucks. The operating value ranges suggested for the same for the study 
performed in Chennai city (Siddharth and Ramadurai, 2013) ranges between 10m and 30m, while a 
range of values between 10m and 50m is suggested in the present study based on simulation trials 
performed in the first and second-levels of calibrations considering the traffic flow in the entire road 
network of the city.

Similarly, the calibrated value for the minimum look-back distance was 14.31m for the study 
performed in Chennai city (Siddharth and Ramadurai, 2013), while assigning a value of 30m for all 
vehicle types worked well in the present study. The operating value ranges suggested for the same for 
the study performed in Chennai city (Siddharth and Ramadurai, 2013) ranges between 10m to 30m, 
while a range of values between 10m and 50m is suggested in the present study.

Also, the calibrated value for the average standstill distance based on the studies in Chennai city 
(Siddharth and Ramadurai, 2013) and Trivandrum city (Mathew and Radhakrishnan, 2010) were 
1.0m and 1.33m respectively, while in the present study, it was found that assigning a value of 0.4m 
for all vehicle types worked well. The operating value ranges suggested for the same for studies 
performed in Chennai city (Siddharth and Ramadurai, 2013) and Trivandrum city (Mathew and 
Radhakrishnan, 2010) ranges between 1 to 2m and 0 to 4m respectively, while the same for the 
present study ranges between 0.5m and 2.5m.

Similar, observations can be made in the case of additive part of desired safety distance for which 
the calibrated value is found to be 0.4m for all vehicle types in the present study, while the studies 
performed in Chennai city (Siddharth and Ramadurai, 2013) and Trivandrum city (Mathew and 
Radhakrishnan, 2010) arrived at calibrated values of 0.2m and 0.28m respectively.

Also, it can be found that in the case of multiplicative part of desired safety distance for which the 
calibrated value is found to be 0.5m for all vehicle types in the present study, the studies performed 
in Chennai city (Siddharth and Ramadurai, 2013) and Trivandrum city (Mathew and Radhakrishnan, 
2010) arrived at calibrated values of 0.78m and 0.16m respectively.

The above-mentioned variations in the calibrated values are mainly attributed to the reason 
that the studies performed by Siddharth and Ramadurai (2013) focused only on a short stretch 
of road, namely IT Corridor State Highway in Chennai and the studies performed by Mathew and 
Radhakrishnan (Mathew and Radhakrishnan, 2010) were restricted to investigations at intersections 
in cities, whereas, the present study was focused on simulating the traffic flow for the entire road 
network spread across 3.08 square km of Mangalore city. Thus, it can be observed that the vehicle 
and driver characteristics need to be calibrated to suit local traffic conditions and driving styles for 
modeling urban traffic scenarios as recommended by Fellendorf and Vortisch (2001).
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