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Abstract Population ageing has the potential to disrupt every aspect of society, placing a great 
deal of stress in particular on our healthcare and welfare systems. To overcome these challenges 
will require effective policy interventions with effects that may not be truly seen for decades. Policy 
makers would therefore benefit from a tool that allows them to assess the long-term impact of their 
decisions on population health. We have developed such a tool by adapting the well-established 
Future Elderly Model (FEM) developed in the US to use the English Longitudinal Study of Ageing. The 
FEM is a Markov microsimulation model for people aged over 50 that generates input populations 
and transition probabilities using the English Longitudinal Study of Ageing, and can then project the 
population forward in time assessing the prevalence and incidence of a number of chronic diseases 
and related economic outputs. By modifying the input populations or transition probabilities, we can 
use the model to investigate counterfactual scenarios and assess the long-term effects of policy inter-
ventions on elderly health. In this paper we describe the model and its workings, provide evidence to 
validate its outputs, and outline possible applications.
JEL classification: A01, Z99
DOI: https://​doi.​org/​10.​34196/​ijm.​00239

1. Introduction
In the United Kingdom (UK), life expectancy at birth has increased over the last 40 years. In 1981 male 
period life expectancy was 70.9 while for females this figure was 76.9. In 2018 this had risen to 79.3 
and 82.9 respectively, with projected rises to 85.4 and 88 in 2061 (ONS, 2019a). The potential impact 
and implications of an ageing population in the UK has received considerable attention, for example 
the UK Government Foresight Future of an Ageing Population project which took a wide-ranging and 
multi-method approach across multiple domains, including housing, health and the impacts of tech-
nology and design (G. O. for Science, 2016).

These improvements in life expectancy are to be celebrated, however an ageing population will 
increase the strain on critical systems such as health and social care provision. This demographic shift 
will also have a wide-ranging impact on the rest of society. For example having a larger proportion of 
the population in retirement (relative to those in work) means lower tax revenue to fund the health 
and social care that some elderly people rely on, often referred to as the Potential Support Ratio (PSR) 
(Lomax et al., 2020). These issues are not confined to just the UK (Balachandran et al., 2017).

To adapt to these challenges, policy makers require robust evidence about current and future 
trends across a broad range of health and socio-economic outcomes. Having suitable modelling tools 
which are capable of assessing the multi-domain and inter-related outcomes for an ageing population 
and the ability to assess scenarios and trade-off in terms of policy development has the potential to 
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inform this evidence base substantially. In this paper we discuss the development of one such model 
and its application to an ageing English population.

A combination of factors contribute to the future heath and economic outcomes for individuals 
within the population. These can be demographic (age, sex, ethnicity), relate to educational attain-
ment or past employment, and/or dependent on current health status or individual risk factors (for 
example smoking, drinking and exercise). This combination of unique attributes soon adds up to a 
complex picture and so is best handled by considering each individual rather than aggregating over 
groups or attributes. Interventions or policy experiments can then be applied to individuals to test 
how outcomes might differ in the future.

We present a microsimulation model for the English population aged 50 and over. The English 
Future Elderly Model (E-FEM) accounts for demographic change, ageing, disability, and mortality, and 
has been adapted from the US FEM, initially created by a team at RAND and now developed at the 
Leonard P. Schaeffer Center for Health Policy and Economics at the University of Southern California 
(Goldman et al., 2004). We utilise longitudinal survey data from the English Longitudinal Study of 
Ageing (ELSA) which enables detailed assessment of individual characteristics across a broad range 
of domains. The aim of this paper is to describe the development of this model and demonstrate its 
utility as a tool for understanding the potential future trajectories of the ageing English population. 
We are motivated by the following research questions: (i) How can we build and validate a model that 
reflects the complex and multi-faceted health and economic status of the English population aged 
over 50? (ii) How do policy intervention experiments impact on the outcomes for this population?

It is our intention to describe how the model works, provide validation of both inputs and outputs 
in an English context and demonstrate the model’s utility with some example scenarios. We intend 
for this paper to act as a reference for further work which will be focused on specific policy questions 
and health outcomes.

The remainder of the paper is structured as follows: Section 2 provides context for the model and 
discusses previous FEM applications; Section 3 sets out the model design for the E-FEM; Section 4 
deals with validation of outputs; Results are presented and discussed in Section 5; finally Section 6 
offers some conclusions and avenues for further work.

2. Rationale and context
In this section we discuss two substantive themes: (i) a brief summary of a number of models which are 
designed for either assessing the elderly population or are focused on health; and (ii) discussion of the 
background to the FEM, including existing applications of the model.

One of the earliest examples of a dynamic microsimulation model designed specifically for health 
policy analysis was POPREP, applied to the United States and later adapted to simulate the Egyptian 
population (Khalifa, 1972). POPREP was used to assess the impact of different methods of family 
planning on the rate of conception (Mustafa, 1973). Aside from POPREP, until the 1990s, health 
microsimulation models were typically static rather than dynamic owing to the computational cost 
of individual-level modelling compared with macromodels (Schofield et  al., 2018). These static 
microsimulation models rely on static ageing methods, where input microdata is transformed to fit 
expected demographic and health constraints at the next time step. Examples of these early static 
models include the evaluation of disease screening (Habbema et al., 1985; Van Oortmarssen et al., 
1981), and assessing fertility (Santow, 1976).

As the development of more complex dynamic microsimulation models to examine health policy 
questions became more prevalent, many of these were written for specific disease processes rather 
than to take in to account a wide range of outcomes (Rutter et al., 2011). This is largely owing to the 
difficulty in creating microsimulation models in the first place - building a model from scratch requires 
a skilled programmer and a significant time investment. Examples include Meester et al. (2015) for 
the screening of colorectal cancer, Mytton et al. (2018) for evaluating cardiovascular disease preven-
tion in the UK, and Su et al. (2015) for assessing the clinical and economic impact of obesity.

More recently, some research groups have moved to creating microsimulation frameworks to 
speed up the process of development, enabling much quicker development of models. Examples 
of large frameworks are LIAM2, () and Modgen developed by Statistics Canada (de Menten et al., 
2014; Canada, 2009. These frameworks provide a generic toolkit to handle basic functions of micro-
simulation such as input/output, cross-sectional ageing, event management, and custom scenario 
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generation, leaving researchers who use them to focus on developing models rather than software. 
Providing these functions in a user-friendly manner reduces the expertise and time needed to create 
new models from scratch and potentially opens up a range of new possibilities for using microsimula-
tion to answer pertinent policy-relevant questions.

2.1. The future elderly model
The FEM is an example of a microsimulation framework, although not in the same way as LIAM2 or 
Modgen. The FEM uses the Health and Retirement Study (HRS) as the primary data source, which is 
a longitudinal survey of health and ageing for people over the age of 50 in the US. Many countries 
around the world have since developed their own longitudinal health surveys based on the HRS, 
which has enabled comparative research into ageing. These studies are all hosted on the Gateway 
to Global Aging platform (​g2aging.​org) which also provides code to harmonise the datasets, linking 
an individual respondent’s information between waves and generating comparative variables. The 
comparative nature of these datasets means that the ‘engine’ on which the FEM runs can be adapted 
to different nations relatively easily, which not only vastly decreases the time required to develop a 
microsimulation but offers the potential for cross-national comparison of model outcomes. A key 
feature is that using harmonized data and a common simulation engine means that differences in 
projections can be interpreted as true differences between countries, rather than driven by modeling 
or data issues. An excellent example of this comes from a recent publication from Atella et al. (2021) 
uses the FEM to compare disease prevalence, Life Expectancy, and inequalities in health outcomes in 
the future elderly across 12 OECD countries.

The FEM was originally conceived in 1997 by Dana Goldman as a dynamic microsimulation model 
designed to help policy analysts and firms understand future trends in healthcare spending, health, 
and population longevity. Originally built for an administrative database of Medicare beneficiaries 
aged 65 and over (Goldman et  al., 2004), it has, for example, been used to produce scenarios 
of the future cost of providing healthcare to the elderly population under a range of advances in 
medical technology (Goldman et al., 2005). More recent applications of the FEM in the US include an 
assessment of longevity and public finances if health trends approximated those in Western Europe 
(Michaud et al., 2011), predicting the quantity and quality of life (Leaf et al., 2021), and assessing 
innovations in cancer treatment (Zhao et al., 2019).

The FEM has been used and adapted to analyse a wide range of topics in a number of different 
countries. Chen et al. (2016) use an adaptation of the FEM to forecast disability and health for Japan’s 
future elderly using the Japanese Study of Aging and Retirement. For Mexico, Gonzalez-Gonzalez 
et al. (2017) use the FEM to estimate the future prevalence of diabetes, using as input the Mexican 
Health and Aging Study and a range of hypothetical interventions which would reduce diabetes 
prevalence. For Singapore, Chen et  al. (2019) adapt the FEM to take as an input the Singapore 
Chinese Health Study (SCHS). They use the model to assess the prevalence of ADLs and IADLs and 
the spending of elderly people on hospital care. A cross-country comparison of smoking, life expec-
tancy and chronic disease in the US, South Korea and Singapore is undertaken by Kim et al. (2021). 
They find that the life gain for heavy smokers quitting vs light smokers quitting is apparent in all three 
countries but that the magnitude is higher in South Korea and Singapore than the US.

3. The english future elderly model
In this section we discuss the development of the E-FEM, outlining the data used, model design, 
imputation of missing variables and the transition models estimated on the data.

3.1. Data requirements
The primary source of input data for the E-FEM is the English Longitudinal Study of Ageing (ELSA) 
(Banks et  al., 2019). ELSA is a longitudinal survey conducted on a representative sample of the 
English population aged 50 and over, and contains a wealth of information including demographics, 
physical and mental health, risk behaviours (for instance smoking and drinking), functional limitations, 
work and income. The original sample was drawn from households that previously participated in the 
Health Survey for England (HSE) between 1998 and 2001. This same group of respondents were inter-
viewed at intervals of two years (known as waves), and any change in state for those individuals was 
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recorded. This allows us to observe the transitions between states over time at the individual level, 
and to estimate transition models based on related characteristics. In ELSA, the majority of binary 
response variables are in an absorbing state, which means that once entered, that state cannot be 
left. For example, when asking about chronic health conditions, the question posed is: "Has a doctor 
ever told that you have (or had) any of the following conditions?" Once a respondent answers ‘‘yes’’ 
this state is carried forward to future waves. ELSA is jointly run by teams at University College London 
(UCL), the Institute for Fiscal Studies (IFS), National Centre for Social Research, and the University of 
Manchester.

The reliance on a single dataset in the E-FEM is in contrast to many other microsimulation models, 
where often multiple sources of input data are required. One example of this is the Population Health 
Model (POHEM) developed by Statistics Canada, which uses a host of both longitudinal and cross-
sectional surveys to inform transition models and generate the starting population (Hennessy et al., 
2015). Using only ELSA in this way means that the populations we use for estimating transitions 
and running the model are equivalent in terms of bias and sampling frame, and the mechanisms 
driving change are the same throughout. ELSA data was accessed from the UK Data Service,1 and 
the Stata harmonisation script for collating all waves of ELSA was downloaded from the Gateway to 
Global Ageing .2Harmonising the data collects all information into a single file, containing cleaned and 
processed variables with consistent and intuitive naming conventions, model-based imputations and 
imputation flags, and spousal counterparts of most individual-level variables.

Wave 1 of ELSA reports data for March 2002, where sample members were drawn from respon-
dents to the Health Survey for England (HSE), and initial data collected for the HSE was linked to 
ongoing ELSA measurements. The initial sample included 11,050 respondents aged 50 and over, and 
refreshment samples selected from the HSE were included in waves 3, 4, 6, and 7. By wave 8 in 2016, 
the sample included 8375 respondents. Table 1 shows all the outcome variables that are projected in 
the E-FEM model based on ELSA data.

Whilst the E-FEM relies mostly on ELSA as a primary data source, some other data are required 
in model preparation. Additional data from the UK 2011 Census of Population is used to re-weight 
the stock and replenishing populations by sex, age, and educational attainment. This is to ensure the 
stock population is representative of the wider English population aged 50 plus at the start of the 
simulation, and any replenishing populations remain so into the future. Mid-year population estimates 
were used to re-weight by sex and age from 2012 to 2018, and beyond 2018 switched to national 
population projections. Both of these datasets are produced by the Office for National Statistics 
(ONS). For education, there is no widely available and reliable data projecting levels of attainment into 
the future. Instead, we used data on education levels reported in the 2011 Census, and assumed that 
the highest level of educational attainment for an individual did not change after the age of 30. Using 
this assumption, we re-weighted the replenishing populations by education for the first 20 years of 
simulation, and held the final distribution constant for any waves beyond that.

3.1.1. Data limitations
Whilst ELSA is an important source of data in the study of elderly health, there are some limitations 
that must be acknowledged in the scope of this work. Some of these we deal with in the imputa-
tion section of the paper. Firstly, there have been some changes to the survey over time that have 

1.	 ukdataservice.ac.uk/
2.	 g2aging.org

Table 1. Variables tracked by the model

Domain Variable

Health Mortality, Alzheimers, Cancer, Dementia, Diabetes, Heart Disease, High Cholesterol, 
Hypertension, Lung Disease, Stroke

Risk Factors BMI, Smoking Status, Alcohol Consumption, Exercise

Functional Limitations Difficulties in Activities of Daily Living (ADLs), and Instrumental Activities of Daily Living 
(IADLs)

Economic Employed, Unemployed, Retired/Disabled
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significant implications in terms of bias. For example, a number of physical measurements including 
height and weight are carried out as part of a visit from a qualified nurse, which happens only every 
second wave. From wave 2, the nurse visit was only offered to ‘core sample members’ who had an 
interview in person, however in wave 8 eligibility for the nursing visit was further determined by sub-
sampling. From this point, selection prioritised those who had responded to all previous nurse visits 
from cohorts 1-6, reducing the number of eligible respondents and introducing bias.

Another limitation is the attrition rate of the ELSA sample, shown in Table 2. Banks et al. (2011) 
investigated attrition rates in both ELSA and the US HRS from 2002 to 2006, finding that rates in ELSA 
were almost 4 times higher for ages 55-64 and 70-80 than in the HRS. They reported that this higher 
attrition could not be fully explained by differences in the survey design or sampling methodology, 
but were more likely due to cultural differences between North American and European populations 
when it comes to scientific surveys. Respondents in the lower education group were most likely to 
attrit in ELSA, and in particular those with low numeracy scores, suggesting a potential source of bias. 
Banks et al. (2011) did however conclude that disease prevalences were not biased by attrition in 
either study, and that the small bias they did find was driven by mortality.

Finally, the way ELSA deals with nursing homes and institutional living leads to some specific 
sampling issues. For the first two waves, ELSA did not follow respondents into nursing homes so 
they were lost from the survey. Starting in wave 3, ELSA surveys respondents in institutions either 
by proxy or in person, but these individuals are assigned a cross-sectional analysis weight of zero. 
Respondents who move into a nursing home are likely to be more ill than the population average, 
and with a higher probability of mortality, so not including them in the full sample could bias the 
population towards a healthier state.

3.2. Model design
The E-FEM is a first-order Markov chain model competing risks model. The Markovian nature of the 
model means that characteristics that get assigned at time T (the present) only depend on character-
istics at time T-1 (the previous timestep). As a result of this, the order that these changes are made in 
the simulation is inconsequential, as each characteristic is simply a function of several factors at time 
T-1. The order that is important in the E-FEM however is what we describe as the ’causal pathway’. 
That is, risk behaviours lead to chronic disease and functional limitations, which in turn have an impact 
on economic outcomes. For example, BMI is a predictor of the incidence of stroke, which can lead to 
functional limitations, which in part predict a respondents working status. These pathways are deter-
mined individually in the transition models of each characteristic.

Running the E-FEM happens in two phases - preparation and simulation. In the preparation 
phase raw ELSA survey data are harmonised, cleaned, and variables of interest are extracted in 
order to create starting populations. Transition models are estimated from one of the starting 
populations, and all this information is written into configuration files for use in the simulation. 
Preparation is handled in Stata (StataCorp, 2021). The simulation phase then takes the starting 

population and ages individuals, dynamically 
applying the transition probabilities between 
each wave to transform the state of simulants 
and project them into the future. We can think 
of these as projections of the future of the ELSA 
survey respondents, which we use to repre-
sent the future of the English population due 
to the representative nature of the survey and 
the re-weighting to 2011 Census and mid-year 
population estimates and projections.

The E-FEM can run both whole population and 
cohort simulations. The structure of both of these 
simulation types is shown in Figure 1. Population 
level simulations begin with the stock popula-
tion, which includes all ELSA core respondents 
aged 51 or over in wave 6 (2012). At each wave 

Table 2. Sample attrition in the over 50s in 
ELSA. The sample was replenished in 2006, 
2008, 2012, and 2014

Year Sample Size

2002 11391

2004 8780

2006 8655

2008 9805

2010 8988

2012 9068

2014 8152

2016 7133
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of the population simulation, the replenishing cohort is included, refreshing the stock population with 
people aged 51 and 52. This is to ensure the age distribution of the sample remains representative. 
The cohort simulation does not refresh the sample over time, and instead follows only people aged 
51 and 52 from the replenishing cohort.

3.3. Starting populations
Three separate data files are required to run the E-FEM: the stock, replenishing, and transition popu-
lations, all of which are generated from harmonised ELSA data. The stock population is produced 
from the whole sample of core respondents aged over 50 at wave 6 of ELSA (2012), and is the starting 
point for the population simulation. The replenishing population is derived from the stock population, 
where respondents aged 51 and 52 are extracted. The replenishing population is included at each 
new wave of the population simulation, to maintain the age distribution, but is also the starting point 
of the cohort simulation. The transition population contains all respondents from wave 2 onwards, and 
is used to estimate all of the statistical models that are used for ageing the simulants. Table 3 provides 
summary statistics on each population.

The statistics for the replenishing population in Table 3 are based on 2012 data after re-weighting. 
The re-weighting step produces a copy of the replenishing population for each wave of the simulation 
with the cross-sectional weights modified to reflect projected changes in the future. The populations 
are re-weighted by age, sex, and education, which are all significant predictors for most outcomes. 
For example, there is an inverse relationship between smoking and education level, where individ-
uals with low educational attainment are more likely to smoke. As smoking is related to a number of 
chronic diseases in the elderly, the risk therefore of developing these diseases is slightly higher in less 
educated groups. Over time the proportion of people with higher levels of education is rising, while 

Figure 1. Structure of the FEM simulation.
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the proportion of people who are less educated is falling. This will have a diminishing effect on the 
population level prevalence of these chronic diseases in the near future.

3.4. Imputation
One of the more significant challenges faced in the development of the E-FEM involves dealing with 
missing data in ELSA. Some variables are missing data for a significant proportion of records, including 
some key predictor variables such as highest educational qualification (20.9%) and BMI (19.2%). Both 
education and BMI are important predictors for a variety of outcomes, and so these variables were 
imputed before estimating transition models.

All other variables with missing data in the stock population undergo an imputation step during 
the preparation phase. This is because the model cannot run properly if input populations do not 
have complete data, as missing variables cannot be transitioned. As the replenishing population is 
derived from the stock, this imputation step ensures complete data in both starting populations. 
Table A1 in the appendix shows a comparison between the imputed and non-imputed stock popula-
tions, including the proportion of missing data for specific variables. No significant change in summary 
statistics is seen before and after imputation.

Table 3. Summary statistics on key E-FEM populations.

Characteristics Stock Replenishing Transition

Year 2012 2012 2004 - 2016

Wave 6 6 2 - 8

Age, Mean (SD) 66.2 (10.8) 51.5 (0.5) 66.1 (10.4)

Female % 52.9 49.7 53.0

BMI, Mean (SD) 28.4 (5.4) 27.8 (5.4) 28.3 (5.3)

BMI Category (%)

< 25 28.3 37.1 28.0

≥ 25 & < 30 38.8 34.8 39.9

≥ 30 33.0 28.1 32.1

Smoking Status %

Ever Smoked 62.3 44.5 62.3

Current Smoker 13.6 13.7 14.3

Education Level %

Less than Secondary 29.7 11.1 33.1

Upper Secondary and Vocational 59.9 64.1 65.7

Tertiary 10.4 24.8 11.2

Disease Prevalence % (Incidence)

Cancer 9.8 2.9 9.0 (1.46)

Diabetes 11.1 2.8 10.4 (1.34)

Heart Disease 18.9 7.7 18.7 (2.57)

Stroke 4.7 0.0 4.7 (0.85)

Lung Disease 6.1 0.3 6.2 (0.87)

Hypertension 41.8 20.4 42.0 (3.08)

Alzheimer’s 0.35 0.0 0.32 (0.21)

Dementia 1.25 0.27 1.12 (0.58)

High Cholesterol 37.0 14.9 32.5 (3.92)
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3.4.1. Education
Education level has been linked to health through a number of pathways. Higher-educated people are 
more likely to work full time in fulfilling employment, have higher levels of personal control and social 
support, and be less likely to take part in risk behaviours such as smoking and heavy drinking which 
are all significantly correlated with improved health (Ross and Wu, 1995). Education is therefore a key 
variable in the E-FEM, and imputed for respondents where it was missing.

During the preparation phase, an ordered probit model for education was estimated and used for 
imputing missing values during initialisation of the model. As predictors, the education model included 
demographics, marriage status, parents’ education, and spouse’s education (where applicable).

3.4.2. BMI
ELSA does not report BMI directly, but does report height and weight so that BMI can be calculated 
(which is handled by the harmonisation script from the Gateway to Global Aging). This information is 
collected as part of the nurse visit, which was originally only offered to ‘core sample members’ that 
were drawn from the Health Survey for England (HSE) and had an interview in person (that is not by 
proxy). They were also only carried out on odd numbered waves of the study, leaving missing data for 
even waves.

BMI is a significant predictor of a number of chronic diseases and mortality, as well as non-health-
related outcomes such as labour-force participation. In order to effectively estimate transition models 
including BMI, we need information for every wave and as many respondents as possible. We there-
fore generated values for missing even waves using linear interpolation in Stata. As linear interpolation 
simply fills in the midpoint between known data points, transition models estimated from interpolated 
data showed that current BMI was wholly predicted by previous BMI. This did not mirror reality, and so 
we tested adding random noise to the interpolated values to assess if this looked more like observed 
data. For each interpolated data point, we added a sample from a normal distribution with mean 0 
and standard deviation 0.05. When testing values for normal distribution, we compared the RMSE 
term of the BMI transition model with that in the US FEM, and stopped when the terms were roughly 
equal. Table  A2 in the appendix shows a comparison of mean population BMI between raw and 
imputed ELSA data at each wave.

3.5. Transition probabilities
Transition probabilities were estimated from the transition panel dataset. Table 4 provides detailed 
information about these transition models, including the type of each response variable, the type of 
regression model used, and all the predictor variables included in each model. Briefly, the models for 
binary outcomes (such as disease incidence or mortality) use probits, ordered outcomes use ordered 
probits, non-ordered categorical outcomes use multinomial logit, and continuous outcomes use ordi-
nary least squares. The choice of predictor variables to include in each model was based initially on 
previous literature, which were then refined iteratively, with the aim of producing parsimonious but 
well-specified models. The key demographic variables of age, sex, and education were included in 
every model. Some models are estimated for sub-groups of the population. For example, all individ-
uals are included in the mortality model, only current smokers are included in the model that predicts 
smoking cessation, and only those who do not and have never had incident heart disease (since it is 
an absorbing state) are included in the heart disease model.

3.6. Outcomes
The FEM can produce both summary and detailed outputs for each scenario we choose to run. For 
detailed outputs, the state of the population at individual level is written to a new file for each repe-
tition at every wave. Summary outputs are generated by pooling the results of each repetition, and 
calculating a number of summary statistics. For binary variables, the model reports the number of 
cases of an observation in the population, as well as the incidence between waves and the total prev-
alence. For continuous and ordinal variables, the model reports average values, as well as the total 
number (count), the total value, and quintile distributions.

Alongside the many variables which are tracked and transitioned throughout the simulation, there 
are also some outputs that we derive from these variables. For example, the model can be used to 

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/health
https://microsimulation.pub/subjects/dynamic-microsimulation
https://doi.org/10.34196/ijm.00239


 
Research article

Health; Dynamic microsimulation

Archer et al.	 International Journal of Microsimulation 2021; 14(3); 2–26	 DOI: https://​doi.​org/​10.​34196/​ijm.​00239� 10

Table 4. Information on transitioned variables in the model.

Outcome Variable Type
Regression 
Model

Predictors*

Health Status Risk Behaviours
Economic 
Predictors Demographics

Mortality 
incidence

Binary 
Absorbing Probit

Cancer
Diabetes
Heart Disease
Lung Disease
Stroke
Dementia Smoking

Age
Sex
Education

Cancer incidence
Binary 
Absorbing Probit

BMI
Smoking
Alcohol Consumption

Age
Sex
Ethnicity
Education

Diabetes 
incidence

Binary 
Absorbing Probit

Hypertension
High Cholesterol

BMI
Physical Activity
Alcohol Consumption

Age
Sex
Ethnicity
Education

Heart Disease 
incidence

Binary 
Absorbing Probit

Diabetes
Hypertension
High Cholesterol

BMI
Smoking
Physical Activity
Alcohol Consumption

Age
Sex
Ethnicity
Education

Hypertension 
incidence

Binary 
Absorbing Probit High Cholesterol

BMI
Smoking
Alcohol Consumption
Physical Activity

Age
Sex
Ethnicity
Education

Lung Disease 
incidence

Binary 
Absorbing Probit

BMI
Smoking

Age
Sex
Ethnicity
Education

Stroke incidence
Binary 
Absorbing Probit

Hypertension
Diabetes
High Cholesterol

BMI
Smoking
Alcohol Consumption

Age
Sex
Ethnicity
Education

High Cholesterol 
incidence

Binary 
Absorbing Probit

BMI
Smoking
Physical Activity

Age
Sex
Ethnicity
Education

Dementia 
incidence

Binary 
Absorbing Probit

Hypertension
Stroke

BMI
Smoking

Age
Sex
Ethnicity
Education

Alzheimers 
incidence

Binary 
Absorbing Probit

Hypertension
Stroke

BMI
Smoking
Alcohol Consumption

Age
Sex
Ethnicity
Education

Start/Stop 
Smoking Binary Probit BMI

 

 
Age
Sex
Ethnicity
Education

Alcohol 
Consumption Binary Probit

BMI
Physical Activity

 

 
Age
Sex
Ethnicity
Education

BMI Continuous OLS
BMI
Physical Activity

Age
Sex
Ethnicity
Education

Functional 
Limitations

Ordered Oprobit Stroke
Dementia
Alzheimers

BMI
Smoking

Age
Sex
Ethnicity
Education

Continued
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investigate life expectancy, as well as many related variables such as disability-free or disease-free life 
years.

4. Validation
In this section we validate a number of model outcomes. We focus on both internal validation 
(comparing predicted model outcomes with observed model inputs) and external validation by 
comparing model outputs with distributions seen in other datasets.

4.1. Internal validation
Internal validation of a microsimulation amounts to comparing the distribution of attributes between 
simulated outputs and the original data. In this work we employ three methods of internal validation; 
cross-validation, handover plots and Receiver Operating Characteristic (ROC) curves.

For cross-validation the original population was split in two, using only half of the population to 
estimate transition models. The remaining half was then simulated over the same time period as ELSA 
(2002 - 2016) using these models. We compared simulated outputs with ELSA data by performing 
t-tests, the results of which are provided in Tables A3. The handover plots and ROC curves will be 
presented in more detail below.

4.1.1. Handover plots
Handover plots are not a form of statistical validation, but rather a form of face validity. They 
give a quick visual indication that simulated outputs follow the same trend as the input data, 
and confirm that the model is behaving as expected. To generate these plots we estimated tran-
sitions using only data from waves 1-4 of ELSA, and produced a starting population based on 
respondents in wave 5 which was then simulated from wave 5 to 8. Combining these data, the 
plots in Figure  2 show the ’handover’ of chronic disease prevalence from ELSA to the simula-
tion. For each chronic disease, the simulation continues a reasonable pattern from the original 
data, the predicted values are not noisy and the direction and magnitude of the trend appears 
sensible and in-line with expectations. Additional handover plots are provided in Figure  A1. 

4.1.2. Receiver operating characteristic
In order to investigate the efficacy of binary transitions in the model, we used Receiver Operating 
Characteristic (ROC) curves. First proposed by (Pandya et al., 2017) in a cardiovascular disease policy 
microsimulation, ROC curves are used to validate a binary classification, comparing the true-positive 
rate against the false-positive rate. The Area Under the Curve (AUC) relates to the accuracy of the 
prediction, with 1 being perfect classification when comparing simulated data to real, and 0.5 meaning 
the classification is no better than random.

For this analysis, we used the cross-validation population described above, where one half 
was used to estimate transition models and the remaining half used in the simulation. We simu-
lated this population 500 times from 2002 - 2012 before pooling the results of each run to create 

Outcome Variable Type
Regression 
Model

Predictors*

Health Status Risk Behaviours
Economic 
Predictors Demographics

Physical Activity Ordered Oprobit
Functional Limitations
Physical Activity

Age
Sex
Ethnicity
Education

Labour Force 
Participation

Unordered Mlogit Functional 
Limitations

Age
Sex
Ethnicity
Education

*All predictor variables are 2 year lag.

Table 4.  Continued
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a summary output file, which was then compared with ELSA data. The results of this analysis for 
key binary response variables are shown in Figure  3. In all cases the classification is better than 
random, and in some cases much better. For example, the AUC for predicting obesity (BMI > 30) 
and mortality is 0.85 and 0.83 respectively. Predicting chronic disease incidence is not as effective 
however, with AUCs ranging from 0.55 to 0.70. Additional ROC curves are provided in Figure A2. 

4.2. External validation
External validation involves comparing simulated outputs against independent external datasets. This 
is often more challenging than internal validation, as finding comparable datasets off the shelf is 
difficult since question wording and sample selection in surveys often differ. In the case of the E-FEM, 
chronic disease prevalence and incidence levels are projected into the future, starting in 2012. We can 

Figure 2. Handover plots for Chronic diseases by sex.
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therefore use data published between 2012 and the present to validate the model over short time 
periods.

4.2.1. Comparison with age UK almanac reported disease prevalence
The Age UK almanac of disease profiles in later life (Melzer et al., 2015) is a collection of statistics on 
the prevalence of chronic diseases in elderly people, reported by sex and 5 year age group (over 60).

We ran a cohort simulation of the E-FEM for a 12-year period between 2004 to 2016 and compared 
the prevalence of a number of chronic diseases at the end of the simulation with those reported in the 
Age UK data. The results of the comparison can be seen in Figure 4 where the comparison is broken 
down by age group and sex. The graphs provide a good indication that the E-FEM is, on the whole, 
predicting chronic disease prevalence well (at least over a 12-year projection period) when compared 
to the results reported in the Age UK data. Unusual results in the 100 plus population from the E-FEM 
are most likely caused by a small sample size, as not many simulants survive to that age in the model. 
We were not able to compare the prevalence of cancer or heart disease in this validation as the Age 
UK definitions did not match those from ELSA. In the Age UK data cancer diagnosis relates to the 
previous 5 years only, whereas ELSA asks if the respondent has ever been diagnosed. Heart disease in 

Figure 3. ROC curves for key binary response variables with a 10-year simulation horizon, from 2002 - 2012.
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the Age UK data was defined as one or more of a limited number of conditions, compared with ELSA 
which reports any heart condition as heart disease.

4.2.2. Smoking
We ran the E-FEM model to 2018 and compared our estimates of smoking prevalence with 
data for the same year reported in a fact sheet published by Action on Smoking and Health 
(ASH) (ASH, 2020), a public health charity in the UK that works to eliminate the harm caused 
by tobacco, and produces statistical reports on smoking habits broken down by sex and age 
group. Figure 5 shows the comparison between simulated (E-FEM) and observed (ASH) data in 
2018. In both age groups, the E-FEM is under-predicting the prevalence of current smokers by 
approximately 1-2 percentage points.

5. Results and discussion
The E-FEM provides a model capable of undertaking policy experimentation across a wide range of 
health outcomes. To illustrate the utility of the model, we present results from the baseline projections 

Figure 4. Chronic Disease prevalence comparisons by age group between FEM and AgeUK almanac of chronic 
disease in 2014. AgeUK figures include 95% confidence intervals.
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alongside two counterfactual scenarios, focused on heart disease and smoking. Heart disease provides 
an opportunity to demonstrate a change in outcomes where a chronic disease is directly impacted by 
model scenarios. Smoking provides an example where an intervention on a behaviour has an impact 
on health outcomes and survival.

5.1. Scenarios
For the baseline projections we ran both population and cohort simulations with no alterations. Both 
the stock and replenishing populations were included (where appropriate) without any modification, 
and ran for 56 years (28 waves) from 2012 to 2068. The scenario for heart disease was run as a 
whole population simulation in which nobody develops heart disease in the model. By removing heart 
disease completely, we can investigate its effect on mortality and disability and see how the removal 
of heart disease affects life expectancy and healthy life expectancy. The smoking scenario was run as a 
cohort simulation of people aged 51 and 52. In this scenario, smokers in the cohort immediately quit 
and do not start smoking again in the model. This way we can investigate the impact smoking has on 
chronic disease prevalence and mortality.

5.2. Heart disease
Heart disease in ELSA is a catch-all term which encapsulates a range of conditions that affect the 
heart’s structure and function and is part of a broader set of conditions which are known as Cardiovas-
cular Disease (CVD). CVD is the leading cause of death worldwide, accounting for approximately 31% 
of all mortality (WHO, 5AD). In England, it is also one of the largest causes of premature mortality, 
with 33,812 people under the age of 75 dying from CVD in 2016 alone (Public Health England, 2AD). 
Mortality data from 2001 to 2016 in England has shown a long-term decline in the death rate from 
CVD, which is reported as one of the main reasons for the increase in life expectancy over this time 
period. Whilst mortality from CVD has decreased, morbidity has increased as people live longer with 
these conditions, which has increased the burden on health and social care. Public Health England 
(PHE) estimates that annual healthcare costs alone for CVD amount to an estimated £7.4 billion, whilst 
non-healthcare costs are much higher, estimated at £15.8 billion. CVD is one of the most significant 
targets for PHE, with numerous ongoing strategies for disease prevention. Table 5 shows the regres-
sion model used to estimate Heart Disease transitions in the E-FEM.

We used the E-FEM to investigate the total burden of disease in the elderly population by 
comparing the baseline projection to the counterfactual scenario in which nobody developed heart 
disease whilst in the model. The input populations were not modified in any way for this scenario, so 

Figure 5. Smoking prevalence comparison by age group in 2018. Simulated data (starting in 2012) compared with 
prevalence statistics generated by the Action on Smoking and Health charity.
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any simulants in the stock or replenishing popula-
tions with heart disease were kept in the model. 
Figure  6 compares the average age at death 
between the baseline and intervention scenarios. 
There are improvements to overall survival in 
the intervention, with a significant difference 
emerging in 2028 of 0.5 years that increases to 
1.2 years in 2050.

5.3. Smoking
The impact of smoking on public health has 
been studied extensively, and the link between 
tobacco smoke and chronic health conditions 
is well understood (Newcomb and Carbone, 
1992; Prasad et  al., 2009; Al-Bashaireh et  al., 
2018). Various forms of tobacco control inter-
ventions have been attempted around the world, 
including mass media campaigns (Kuipers et al., 
2018), advertising bans (Harris et  al., 2006), 
price increases (Chaloupka et  al., 2012), work-
place and school smoking bans (Brown et  al., 
2009), and the addition of warning labels to pack-
aging (Hammond et al., 2006). The outcomes of 
interest are usually health-related, however some 
studies have focused on Socio-Economic Status 
(SES), which has strong links to health. Table  6 
shows the transition model for both starting and 
stopping smoking.

Figure 7 compares the average age at death 
in both the baseline and intervention case (where 
smokers in the cohort stop smoking and nobody 
starts smoking). This figure includes the whole 

Table 5. Parameter estimates for probit model 
of heart disease incidence.

Heart 
Disease

Male 0.108***

White -0.0729

Less than Secondary Education -0.0642

Higher or further education 0.0194

Lag of age spline, less than 65 0.0103

Lag of age spline, 65 to 74 0.0262***

Lag of age spline, more than 75 0.0182***

Lag of BMI spline, less than 30 0.163

Lag of BMI spline, more than 30 0.218

Lag of ever smoker 0.0259

Lag of current smoker 0.0264

Lag of heavy smoker (>20 cigs/day) 0.0836

Lag of problem drinker (>12 drinks/week) -0.0318

Lag of doctor ever - Diabetes 0.0520

Lag of doctor ever - Hypertension 0.163***

Lag of doctor ever - High Cholesterol 0.0659*

Lag of activity level - Low 0.174**

Lag of activity level - Moderate 0.0979*

Constant -3.172***

N 22,333

Pseudo R2 0.0335

Figure 6. Average age at death comparison between baseline and no heart disease intervention. The shaded 
bands represent Monte Carlo confidence intervals.
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population, including both smokers and non-
smokers. Results show that average death age is 
only slightly higher in the no smoking scenario.

However, smoking does not just impact on 
mortality, but also has strong links to increased 
morbidity. This relationship is most obvious when 
looking at lung disease. Figure 8 plots the prev-
alence of lung disease in both the baseline and 
no smoking scenarios, once again including both 
smokers and non-smokers. There is a clear and 
significant difference between the scenarios, with 
prevalence of lung disease being approximately 
1.5 percentage points lower after simulating both 
cohorts for 30 years. This difference is across the 
whole population, and not just smokers.

5.3.1. Treatment on the treated
To further illustrate this link, we looked at the 
difference in life years and disability-free life years 
for smokers between the two scenarios, this time 
in a ’treatment on the treated’ analysis where only 
smokers are included. The results of this analysis 
are shown in Table 7. When looking at smokers 

only as opposed to the whole cohort, the improvement in life expectancy and healthy life expectancy 
is much more obvious. Smokers who quit at age 50 in this model live on average 7 years longer than 
if they did not. However, the improvement in disability-free life-expectancy is only approximately 
4.5 years, suggesting that while those who quit live longer, only a proportion of this time equates to 
disability-free years.

We can run analyses by sub-population using the E-FEM. In the case of smoking we investigate how 
the intervention affects smokers by different levels of education. Table 8 shows the average increase 

Table 6. Parameter estimates for probit models 
of smoking initiation and cessation.

Smoking

Started Stopped

Male 0.112** 0.0263

White 0.0228 0.257

Less than Secondary education 0.188*** -0.106*

Higher or Further education -0.154** 0.215**

Lag of age spline, less than 65 -0.00572 0.0188***

Lag of age spline, 65 to 74 -0.0186** -0.00979

Lag of age spline, more than 75 -0.0289** 0.0171

Lag of BMI spline, less than 30 -0.414* 0.839***

Lag of BMI spline, more than 30 0.25 0.0703

Constant -0.649 -5.060***

N 41951 6157

Pseudo R2 0.019 0.0129

Figure 7. Whole population (including smokers and non-smokers) survival curve compared between the baseline 
and no smoking scenarios.
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in life years and disability-free life years by level of education. The largest overall improvement in life 
expectancy can be seen for the median educational level (level 2), with over eight years improve-
ment. Those in the lowest education group (level 1) show the smallest average improvement in life 
years (5.5), as well as the lowest improvement in disability-free life years (3.4). These results suggest 
that other comorbidities disproportionately affect those with the lowest educational attainment, so 
even though intervention on a single attribute (smoking) delivers the substantial improvements in life 
expectancy, only a proportion of these extra years are disability free.

6. Conclusions
We set out with the aim of discussing the development of a dynamic microsimulation model for an 
ageing English population, the E-FEM. In this paper we have demonstrated how data from ELSA has 
been harmonised, cleaned and variables imputed to make it suitable for our model. Validation, both 
internal and external, demonstrates that the E-FEM is capable of accurately predicting health outcomes 
and disease states in to the future while results demonstrate that on a whole population and on a cohort 
the model can inform disease and mortality outcomes under counterfactual scenarios. We show results 
for a heart disease and a smoking intervention to demonstrate the type of experiments that can be run 
using the E-FEM but the model can be used to estimate a wide range of potential outcomes.

6.1. Limitations and future work
Developing and using a dynamic microsimulation 
like the E-FEM requires that some pragmatic deci-
sions are made so as not to be overwhelmed by 
the complexity of the data, the model itself, and 
when interpreting outcomes. This can be summed 
up by considering the sources of uncertainty and 
bias which come in to play. The first arises from 
the data used as input. Limitations with ELSA have 
been discussed in this paper but in brief relate 
to bias and the representativeness of the data, 

Figure 8. Whole population prevalence of lung disease comparison between the baseline and no smoking 
scenarios, with Monte Carlo confidence intervals.

Table 7. Life year and disability-free life year 
comparison between baseline and no smoking 
scenario. This is a treatment on the treated 
analysis, so only including respondents that 
smoke.

Scenario Life Years Disability-free Life Years

Baseline 24.4 16.9

Intervention 31.4 21.4
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missing values and changing data collection methods. The first of these have been mitigated some-
what by scaling to other data (Census, mid-year estimates and projections) and through imputation.

A second source of uncertainty arises from the estimation of the transition models. Further work 
to develop policy specific-models using the E-FEM could utilise non-parametric bootstrapping or 
other methods to improve these models. Third, that the E-FEM is a Monte Carlo simulation means 
that outputs are inherently uncertain. We have generally used the average result from 100 runs in our 
results, and have quantified this uncertainty using confidence intervals where possible.

Fourth, and most difficult to deal with, is that the future is inherently uncertain. Trends in predic-
tors that are important for estimating transitions within the model, such as risk behaviours (smoking, 
drinking, etc.) are very difficult to predict. Future development of the model could deal with these in 
a similar way to how we currently deal with changes in educational attainment. Experimentation with 
trends in risk behaviours and demographic change could be used to modify future populations.

6.1.1. Prediction of cancer incidence
Special mention must be given to the prediction of cancer, which as shown in Figure 3 is not performing 
much better than chance when compared with original ELSA data. There are a couple of possible 
contributing factors at play that mean cancer prevalence and mortality may not wholly be captured by 
ELSA, as well as other reasons why cancer may be difficult to predict from this data. Firstly, the time 
between diagnosis and death is often short for cancer, which gets progressively worse with age. For 
example in lung cancer, the 1-year survival rate for someone diagnosed between ages 55-64 is 44.7%, 
whereas the same diagnosis between ages 75-99 has a 1-year survival rate of 32.0% (ONS, 2019b). 
There is therefore a significant chance that a respondent diagnosed with cancer between waves may 
not survive to the next wave. Secondly, cancer is one of the leading reasons for the need for pallia-
tive care. As previously stated, respondents who move into assisted living facilities (including pallia-
tive care) are given an analysis weight of zero, effectively removing them from our analyses. Thirdly, 
current predictors taken from ELSA (for example BMI, smoking status) may not be adequate for the 
prediction of cancer in this case. Further information such as family history, pack-years for smokers, 
or other environmental exposures may be necessary to improve the model. Also given that different 
types of cancer can have very specific behavioural and genetic risks, it may be inadequate to predict 
incidence of all types of cancer with a single set of predictor variables. Finally, cancer could be more 
of a ’random shock’ than other diseases, meaning prediction of it is more difficult than other diseases 
even with perfect data.

6.1.2. Summary
This paper has provided an overview of the development of the E-FEM and sought to demonstrate its 
utility and validity as a model for undertaking policy analysis related to an ageing English population. 
We set out the basis for further work which will address policy questions which are specifically perti-
nent to this ageing population. It also marks further expansion of the FEM model developed for the 
US which has subsequently been adapted and applied to other countries. This will provide an oppor-
tunity to undertake cross-country comparisons with the English population represented in our work.

The potential applications of this model are broad, as evidenced by the history of FEM models in 
the United States and around the world. Moving forward, we intend to use the E-FEM to assess the 
burden of chronic disease, evaluate the impact of early life experiences on later-life health, investigate 
the relationship between socio-economic factors and the quality and quantity of life, and quantify the 
potential impact for interventions targeting key risk factors.

Table 8. Average improvement in life years and disability-free life years between scenarios by 
highest level of education.

Education Level Life Years Improvement Disability-free Life Years Improvement

1 5.5 3.4

2 8.4 5.3

3 7.7 5.4
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Appendix

Imputation

Figure A1 Handover plots for ADLs and IADLs.
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Figure A2. Receiver Operating Characteristic curves.

Table A1. Summary statistics for raw and imputed stock populations, including the percentage 
of missing data where applicable.

Characteristics Raw Stock Imputed Missing (%)

Age, Mean (SD) 66.5 (10.8) 66.2 (10.8) 0

Female (%) 52.9 52.9 0

BMI, Mean (SD) 28.4 (5.4) 28.4 (5.4) 19.2

BMI Category (%)

< 25 28.3 28.3 -

≥ 25 & < 30 42.2 42.2 -

≥ 30 29.5 29.5 -

Smoking Status (%)

Ever Smoked 62.5 62.3 1.83

Current Smoker 12.2 13.6 0.05

Education Level (%) 20.9

Less than Secondary 38.6 38.6 -

Upper Secondary and Vocational 48.0 47.9 -

Some University or more 13.5 13.5 -

Initial Disease Prevalence (%)

Cancer 9.8 9.8 0.009

Diabetes 11.1 11.1 0.009

Heart Disease 18.9 18.9 0.009
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BMI

Table A2. Raw vs imputed BMI mean and standard deviation at each wave of ELSA.

Wave Raw BMI Imputed BMI

1 - 28.0 (5.3)

2 28.0 (4.9) 28.0 (5.0)

3 - 28.2 (5.2)

4 28.3 (5.4) 28.4 (5.4)

5 - 28.4 (5.4)

6 28.4 (5.3) 28.4 (5.4)

7 - 28.4 (5.4)

8 28.3 (5.5) 28.3 (5.5)

Table A3. T-test results for health outcomes.

Variable FEM 3 ELSA 3 P value 3 FEM 5 ELSA 5 P value 5 FEM 8 ELSA 8 P value 8

Alzheimers 0.0067 0.00325 0.00076 0.0103 0.00404 0 0.0178 0.0119 0.0204

Any ADLs 0.184 0.213 0 0.199 0.234 0 0.241 0.225 0.0938

Any IADLs 0.204 0.222 0.012 0.230 0.255 0.00292 0.268 0.266 0.839

Cancer 0.1 0.0863 0.00448 0.130 0.119 0.0836 0.176 0.164 0.182

Dementia 0.0159 0.0102 0.00156 0.0226 0.0194 0.24 0.0324 0.164 0.0214

Diabetes 0.109 0.0937 0.00275 0.132 0.128 0.571 0.164 0.151 0.125

Heart disease 0.220 0.175 0 0.26 0.222 0 0.328 0.29 0.00031

Hypertension 0.453 0.448 0.555 0.491 0.506 0.115 0.549 0.538 0.381

Lung disease 0.0836 0.0719 0.00989 0.0957 0.0863 0.0857 0.111 0.0898 0.00167

Stroke 0.0558 0.0504 0.156 0.0667 0.06743 0.875 0.082 0.089 0.289

Table A3. t-test results for economic outcomes.

Variable FEM 3 ELSA 3 P value 3 FEM 5 ELSA 5 P value 5 FEM 8 ELSA 8 P value 8

Employed 0.284 0.285 0.906 0.194 0.179 0.0412 0.0809 0.0842 0.606

Unemployed 0.00102 0.00662 0.0132 0.00519 0.00675 0.321 0.00137 0.00092 0.529

Retired/
Disabled

0.706 0.707 0.0.84 0.801 0.811 0.167 0.918 0.912 0.411

Table A3. t-test results for risk behaviours.

Variable FEM 3 ELSA 3 P value 3 FEM 5 ELSA 5 P value 5 FEM 8 ELSA 8 P value 8

BMI* 28.4 28.0 0.0014

Drinks Alcohol 0.866 0.874 0.205 0.859 0.851 0.239 0.844 0.839 0.552

Problem Drinker 0.12 0 0 0.122 0.127 0.487 0.109 0.113 0.567

Activity - Low 0.0907 0.101 0.0426 0.099 0.13 0 0.112 0.129 0.0304

Activity - 
Moderate 0.164 0.162 0.739 0.168 0.181 0.0775 0.183 0.201 0.0508

Activity - High 0.745 0.736 0.231 0.733 0.689 0 0.706 0.669 0.00097

Smoke Now 0.132 0.143 0.0678 0.106 0.116 0.106 0.076 0.0708 0.391

Smoke Ever 0.637 0.628 0.279 0.639 0.648 0.322 0.638 0.658 0.0646

Heavy Smoker 0.0234 0.0297 0.906 0.0214 0.0229 0.595 0.0128 0.0136 0.761
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Variable FEM 3 ELSA 3 P value 3 FEM 5 ELSA 5 P value 5 FEM 8 ELSA 8 P value 8

*ELSA only reports BMI information for even waves.

Table A3. t-test results for mortality.

Variable FEM 3 ELSA 3 P value 3 FEM 5 ELSA 5 P value 5 FEM 8 ELSA 8* P value 8

Died 0.0294 0.0412 0.00033 0.0435 0.0602 0 0.0596 0 0

*End of life interviews are only reporte for waves 2-6 (excluding wave 5). There is therefore no mortality 
informationfor waves 7 or 8.
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