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Abstract This paper describes the development of a microsimulation model to simulate the long-
term impact of the conversion of agricultural land to forestry at individual farm level. Reflecting the 
negative externalities associated with agriculture in terms of carbon emissions and the positive forest 
externalities in terms of carbon sequestration, we model both private returns and social returns. These 
reflect respectively the return from the market and the wider return to society, which incorporates 
both market returns and the public good returns associated with carbon emissions/sequestration. The 
modelling assumptions used in developing the model are described in detail, along with the valida-
tion of model components against other analyses and the testing of the sensitivity of the results to 
different assumptions. The paper considers the distributional impact of the private and social returns 
to agriculture finding significant heterogeneity between the private and social return across farms, 
with the incorporation of carbon value, resulting in many more farms with positive social return than 
private returns.
DOI: https://​doi.​org/​10.​34196/​ijm.​00232

1. Introduction
There is a growing literature on the use of microsimulation models for agriculture, forestry and 
land use change (Richardson et al., 2014; Rahman, 2018; Montaud et al., 2020; Boulanger et al., 
2020), much of which addresses issues related to productivity and incomes (O’Donoghue, 2017). 
However, consistent with an increasing global focus on sustainability, there is also increasing interest 
in combining analyses of both economic and environmental impacts (Ramilan et al., 2011). A sub-
field of agricultural microsimulation addresses issues associated with land use change from agriculture 
to forestry (Phimmavong and Keenan, 2020), while a previous article in this journal described the 
simulation of private returns for the farm-level land use change to forestry, looking at the impact of 
afforestation on individual farms (Ryan and O’Donoghue, 2019). This paper extends the literature by 
incorporating carbon emissions in a microsimulation of the conversion of agricultural land to forestry, 
enabling the distribution of wider public good returns to be modelled in addition to the private return 
- a representation of the social value.

A theme that links much of the rural land use focused microsimulation literature is the impact on 
the environment (Hynes and O’Donoghue, 2014). Much of the environmental microsimulation liter-
ature (in particular GHG emissions), looks at the household sector particularly in relation to carbon 
taxes (Symons et al., 1994; Cornwell and Creedy, 1996; Bach et al., 2002; Jacobsen et al., 2003; 
Serret and Johnstone, 2006; Ysé and Nick, 2006; Rosas-Flores et al., 2017; Romero et al., 2018; 
Berry, 2019; O’Malley et al., 2020). A number of papers have considered the impact of environ-
mental pollution in agriculture, such as nitrate pollution in the case of Doole et  al. (2013), while 
Hynes et al. (2009, p. 2013) and O’Donoghue et al. (2019); Carauta et al. (2017) have developed 
microsimulation models to examine agricultural GHG emissions.
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Given the centrality of forestry and agro-forestry as a greenhouse gas mitigation (GHG) strategy, 
an obvious extension of the market-analysis microsimulation literature for forestry is the incorporation 
of environmental extensions as in the case of the wider agri-microsimulation field. However, forest 
carbon modelling is complex; carbon (C) is sequestered in living trees and in harvested wood prod-
ucts (HWP), while needles/leaves and deadwood decompose and contribute to carbon stored in soils. 
Bateman and Lovett (2000) model forest carbon sequestration while the impact of forest manage-
ment regimes on carbon sequestration is modelled by (Sedjo, 2001; Kooten et al., 2009; Im et al., 
2007; Yemshanov et al., 2015). However, such analyses focus solely on forestry. In this paper, we are 
interested in microsimulation modelling of carbon sequestration in forests from the perspective of the 
social (private + public) return to a land use change from agriculture.

According to OECD (2016) and UN (2019) projections, the growing demand for food will lead 
to greater competition for land between agriculture and forestry, with a consequent requirement for 
greater understanding of economic and environmental consequences of both land uses. When forests 
replace livestock, there is a reduction in GHG emissions. The transition from agriculture to forestry 
therefore, is particularly important as it involves increased forest carbon sequestration and also helps 
to mitigate agricultural greenhouse gas (GHG) emissions. An indirect cost of the land use change to 
forestry is the loss of flexibility of land use as a result of the legal requirement to replant harvested 
forests. While such non-pecuniary factors have been shown to have a negative impact on the deci-
sion to plant agricultural land (McDonagh et al., 2011; Duesberg et al., 2013; Duesberg et al., 
2014; Pannell and Claassen, 2020), along with other utility-related factors such as leisure (Baker 
et al., 2017), the relativity of forest and agricultural incomes has been shown to be a strong driver of 
planting decisions (Ryan et al., 2018).

Pannell (2008) asserts that policy mechanisms to encourage such environmental changes should 
take the relativity of private and public returns into account. However, due largely to the modelling 
complexity involved, there is little literature that addresses both private and public returns in micro-
simulation analyses of farm afforestation (new planting). Yet, given the growing importance of carbon 
sequestration in public policy, particularly in relation to the justification and design of instruments 
to promote afforestation and in relation to the challenge of mitigating on-farm and animal related 
emissions, it is temporally relevant to extend the private returns model to incorporate the impact of 
carbon sequestration. The objective of this paper is to address this gap by extending the Ryan and 
O’Donoghue (2019) private planting returns microsimulation framework to incorporate the social 
return to farm afforestation replacing an agricultural (livestock) system.

The definition of social return can be quite broad, incorporating all monetary and non-monetary 
aspects. The private return to a landowner incorporates the life-cycle monetary impact of moving 
from agriculture to forestry. However, this clearly ignores significant public good impacts in relation 
to carbon sequestration. There are of course, other aspects of the return including the private return 
to other value chain actors such as timber mills, and other ecosystem services such as biodiversity or 
water quality. To keep the analysis tractable but useful, we adopt a narrower definition of social return 
to a land use change, i.e. the combination of the private return to the landowner plus the value of the 
net carbon sequestration of the land use change.1

We also use a narrow geographical scope, focusing nationally rather than globally. Although not 
without criticism, carbon accounting and responsibilities for management are downscaled to the 
national scale, thus the national approach in this paper is consistent with the policy objectives. On this 
basis, results should be interpreted as being the net implications for a country in terms of its economic 
return to a land use change plus a change in its carbon balance. This analysis considers the impact of 
marginal changes to a single hectare on different types of land. As a result, the consequential global 
implications and substitution effects are hard to determine as alternative protein may come from 
different sources or different agricultural systems with different carbon footprints. While an interesting 
question, it is beyond the capacity of this paper. We believe however, that the policy usefulness of a 
land use change model is enhanced by adding the public good return to the private return, even if 
more complex and more comprehensive approaches are possible.

This paper describes in detail the complex elements associated with modelling the life-cycle private 
and social (incorporating carbon) impact of planting one hectare of forest, substituting for one hectare 

1.	 This narrower scope has also been used in another sphere of microsimulation looking at the private and social 
return to another long-term investment, the return to education (O’Donoghue et al., 2019).
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of an existing agricultural enterprise (in a given year). While the analysis of these changes is in itself 
interesting and important from a policy perspective, there is a need to properly document and assess 
the individual parametric assumptions within the model. The time from initial planting to the final 
release of the carbon stored in harvested wood products can be hundreds of years. Therefore, there 
are no available data for the entire life-cycle, necessitating a modelling approach. Given the lengthy 
nature of the timber growing process, there is considerable variability in the assumptions used in 
different studies. As a result, it is important in a modelling paper to consider the sensitivity of micro-
simulation results to these parameters. The paper also contributes to the literature by clearly docu-
menting the modelling process and data used in this novel model in order to facilitate replicability. In 
addition, the robustness and sensitivity of the model are tested against a range of assumptions that 
may vary over such a long period as a forest life-cycle.

2. Theoretical Framework
The paper aims to chronicle the elements needed to simulate the life-cycle impact of a potential land 
use change involved in the conversion of agricultural land to forestry, taking the social value of carbon 
into account. As there is considerable heterogeneity in agricultural and forestry returns in terms of 
the private (profit) and the public good impact in terms of carbon, we utilise a microsimulation model 
to simulate the income and carbon implications of the farm afforestation land use change on a cross-
section of farm micro units. This model builds on existing literature that considers the distribution of 
private returns to afforestation on farms (Ryan and O’Donoghue, 2019) by calculating the public 
good impact in addition to the private good impact.

Figure 1 describes the structure of the microsimulation model. As the focus of the model is under-
standing the differential return to different land use types, relative to the return from the original 
agricultural land use, the model starts with the distribution of land and its potential in terms of soil 
and other environmental factors such as rainfall, altitude and slope, that influence the productivity of 
land. An important starting premise is that different land uses may have different productivity on the 
same soil types. For example, some soil types are more productive under forests than agriculture, 
whereas within agriculture, some soils are more productive for crops than for animals. There is signif-
icant heterogeneity in these environmental factors, even in a small country like Ireland and as a result 
it is essential to consider the returns to land use change across the range of environmental conditions.

Figure 1. Structure of the Forestry Land use Change Microsimulation Model

Note: dashed curves ----- indicate carbon outputs and ..... indicates the passage of time.
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As State approval is required both to plant forests and to harvest timber, with a legal require-
ment to replant following harvesting, and given the difficulties in returning forest-land to pasture 
or tillage, this analysis models a permanent land use change from agriculture to forest. Starting 
at the top panel of figure 1, the characteristics of the private and social return to agricultural uses 
are described. Different environmental characteristics are optimal for different farm systems (dairy, 
cattle, sheep, tillage etc.). However, the return to each of these systems is quite different. Similarly, 
the environmental footprint in relation to carbon emissions from animals (methane) and pasture or 
crops (nitrous oxide emissions from fertiliser and nutrient application) and greenhouse gas emissions 
from other inputs such as energy are quite different, depending on the farm system, the nature of 
production and the level of intensity and efficiency on individual farm systems. Given this heteroge-
neity, the starting position for the model is the nationally representative distribution of Irish farms 
in the Teagasc National Farm Survey (NFS),2 which captures most of the diversity of farms. Subsi-
dies vary by policy intervention, farm size, location of the farm and historical production levels. A 
carbon emissions model is employed to simulate the carbon emissions from each of these farms. 
For most crops, the production cycle is annual, as crops are planted and harvested annually, or 
follow an annual growth curve in the case of permanent pasture. As a result, the NFS uses an annual 
accounting framework.

However, forests have longer growth cycles than agriculture, spanning from tree planting to matu-
rity and potential harvesting. The length of this cycle depends on the environmental context, produc-
tivity or yield class, tree species and the management regime of the forest in terms of thinning and 
harvesting. As the volume of timber increases over time, so too does the carbon stored or seques-
tered (described later in more detail). As planting, thinning and harvesting tend to be undertaken 
by contractors rather than foresters, there is not as much heterogeneity in management efficiency 
between forests as there is between farms. As in the case of agriculture, forest incomes depend to a 
considerable degree on subsidies.

The incorporation of carbon sequestration in a microsimulation model is challenging in relation to 
the assumptions used. A criticism of the literature is that there is quite a wide variety of assumptions 
used in carbon calculations (Asada et al., 2020), which can have a considerable impact on the results. 
Additionally, these assumptions are often poorly documented. This paper sets out to document the 
data sources, coefficients, assumptions and model validations of a microsimulation of a land use 
change to substitute an agricultural enterprise with a forest as is commonly incentivised in Western 
European countries such as Ireland, UK and Belgium. In this analysis, we use Irish data and coefficients. 
All modelling is undertaken using STATA.

Microsimulation modelling of private and social income requires the estimation of the following 
components:

•	 Forest income is comprised of both afforestation subsidies and market income arising from 
timber sales as a function of the characteristics of different land types and alternative land uses. 
The estimation of timber sales requires forest growth data as a component of a forest bio-
economic model of costs and market income.

•	 Farm micro-data are necessary to estimate the agricultural market and subsidy income fore-
gone on planting in order to model the carbon emissions of different farms.

•	 Quantification of the sequestration of forest carbon and the agricultural emissions displaced 
from the superseded enterprise, dependent on soil variability and the superseded agricultural 
enterprise.

•	 Future valuation of carbon.

2.1. Private (financial) impact of farm afforestation
Afforestation involves an upfront investment with a long time-frame before a return is realised. In order 
to compare the returns from forestry with annual returns from agriculture, a net present value (NPV) 
(Pingoud and Wagner, 2006) life-cycle framework is necessary. As the planting of former farmland  
 

2.	 The Teagasc NFS is the farm-level micro dataset that is the Irish input for the EU Commission Farm Account-
ancy Data Network (FADN).
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also incurs an opportunity cost ,the NPV of Net Private Forest Income is modelled as private forest 
income less agricultural income foregone on a per hectare basis, varying by land and farm conditions 
where:

NPV Net Private Forest Income (per ha) = (Forest Net Market Income + Forest Subsidies) and 
Agricultural Income Foregone (per ha) = (Agricultural Net Market Income + Agricultural Subsidies)3

and
Forest Net Market Income = Harvesting + Thinning Income − 

Establishment Costs − Variable Management Costs − Fixed Forest Costs

where fixed forest costs include annual insurance, maintenance and roadways. Forest establish-
ment costs are also included (but are partially offset by planting grants (subsidies).

Agricultural net market income or net margin is defined similarly by Hennessy et al., 2013 as:

	﻿‍ Agricultural Net Market Income = Output Value − Variable Costs − Agricultural Fixed Costs‍�

As afforestation generally takes place on a small proportion of land within a farm (DAFM, 2015), 
farmers continue to incur fixed agricultural (sunk) costs such as depreciation, buildings, machinery, land 
improvements and interest repayments on loans or ground rents after planting. Because these sunk costs 
generally remain unchanged, for simplicity purposes fixed costs are not included in the equations. Instead, 
a variable costs and income approach to calculating farm income (market gross margin) is adopted:

	﻿‍ Agricultural Net Market Income = Output − Variable Costs‍�

In addition to direct costs that are incurred in forest establishment, management and harvesting, 
there are indirect opportunity costs associated with no longer being able to use the land for agricul-
ture, namely the loss of annual agricultural income. This is accounted for by including the agricultural 
income foregone as an annual cost for each year of the forest rotation.

2.2. The Public Good (carbon) Impact of Farm Afforestation
There are three components of the public good impact: forest carbon storage (sequestration), 
displacement of agricultural GHG emissions from the planted land and the valuation of the seques-
tered/emitted carbon.

Six carbon pools contribute to gains (carbon sequestered) and losses (to the atmosphere) in 
different ways, with each varying by the soil attributes of the land on which planting occurs:

•	 There is a slow increase in soil organic carbon (SOC) in mineral soils over time, whereas organic 
(peat) soils lose carbon on drainage and planting

•	 Carbon is stored incrementally in forest biomass over time, (depending on the tree species 
planted and on the soil and climatic conditions of the planted land) in:

a.	 above ground biomass (>7cm) and
b.	 below -ground biomass (roots >5cm), until the wood is either harvested (removed), decom-

poses or is combusted.

•	 Decomposing material such as

a.	 dead organic matter (DOM) litter (decaying needles/leaves, branches <7cm diameter) and
b.	 wood from dead trees (above/below ground >7cm) can decompose and add to SOC over 

time

•	 Wood removed as harvested wood products (HWP) (products in current use from domestic 
harvests) continue to store carbon until they either decompose (rot) or are combusted.4 The 
half-life of the carbon stored depends importantly on the nature of the harvested wood prod-
ucts and on the disposal and decay rate at end of life for the wood products.

3.	 The reader is referred to Ryan et al. (2018) for a description of the simulation of the bio- economic model 
FORBES and to Ryan et al. (2016) for a description of the forestry subsidies model ForSubs.
4.	 Note: while CO2 and CH4 emissions are generated (respectively) in forest harvesting and forest fires, their 
inclusion is beyond the scope of this analysis.
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A visualisation of total carbon storage over time is presented for these pools for thinned and 
unthinned forests and for a range of forest yield classes in Figure 2. Yield Class is a measure of forest 
site productivity and is reported as the average annual timber production over the life-cycle of a forest 
measured in cubic metres per hectare per year (‍m3ha−1yr−1‍).

The agricultural GHGs displaced on planting are (a) methane ‍
(

CH4
)
‍ emissions from enteric fermenta-

tion in ruminant animals and manure management, (b) direct and indirect nitrous oxide(‍N2O‍) emissions 
for each livestock sector i.e. manure management, fertiliser application and dung/urine deposition, 
along with fertiliser emissions from tillage. Carbon dioxide (‍CO2‍) emissions from fuel and electricity are 
included for both agriculture and forestry.

Figure 2. Total carbon (C) storage curves for unthinned (u) and thinned (t) Sitka spruce yield class 8, 16 and 24

Note: TD1 = date of first thinning

Source: Bateman and Lovett (2000)
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The final component of estimating the public good return to farm afforestation is the application 
of a carbon value to the carbon sequestered/emitted. The concept of the social cost of carbon (SCC) 
relates to the economic cost caused by an additional tonne of carbon (or equivalent) emissions (Nord-
haus, 2014). The cost of additional ‍CO2‍ in the atmosphere varies with the level of GHG emissions and 
as a result, Smith and Braathen (2015) highlight specific assumptions that need definition with regard 
to SCC and the current and future levels of GHG concentrations, against which its effects are to be 
measured. The SCC estimates the monetary value of the incremental impact of an additional tonne of 
emissions. Abstracting from the complexity of these elements of the SCC and from tax, regulation and 
inconsistent assumptions across sectors, the SCC would equal the carbon price, i.e. the marginal cost 
of emissions reduction (the present value of the damage caused per unit of emissions) (Nordhaus, 
2014).

There is significant variation within the literature with regard to the social value of carbon (NESC, 
2018), both in terms of the discount rate and the price of carbon. Stern (2007) valued carbon at $85 
/‍tCO2‍. A report from the Interagency Working Group (IWG) on Social Cost of greenhouse gases esti-
mated a carbon price of between $36 and $42 per ‍tCO2‍ in 2007, using a 3% discount rate (IWG, 2013). 
On the other hand, (Moore and Diaz, 2015) attribute a lower discount rate as a result of damages 
caused by climate change and report a SCC value of $220 per tonne of additional ‍CO2‍ (Moore and 
Diaz, 2015). While the Irish conventional discount rate for forest investments is 5% (Clinch, 1999), 
this paper includes scenario analysis of the impact of a range of discount rates on the carbon value.

As one of the rationales for this analysis is the examination of the social return to the land use 
change from agriculture to forestry as a mitigation measure for agricultural GHG emissions, we require 
an indication of the substitution effect in physical terms. For this purpose, we utilise the carbon value 
recommended by the Irish government as the shadow price of carbon for non-ETS sectors. Given the 
uncertainty around carbon valuation, we utilise the shadow prices for different years i.e. 2019 (€20), 
2020 (€32), 2030 (€100), 2040 (€163) (DPER, 2019).

In estimating the social return to land use change, the value of forest carbon sequestered and 
GHGs emitted by agriculture and the relative private returns are included as follows:

	﻿‍

NPV Social Income Afforestation of agricultural land = Net Private Forest Income−

Agricultural Net Market Income+

Value of Net Carbon Sequestered by Forests

+ Value of GHGs Emitted by Displaced Agriculture‍�

In order to compare (a) forest returns over different rotation lengths and (b) annual agricultural 
returns with long-term forest NPVs, an annual equivalised of NPV is required (Herbohn et al., 2013).5

3. Methodology
3.1. C-ForBES Microsimulation Framework6

Microsimulation techniques are increasingly used to deal with the complexity of cross-system and 
cross-country agricultural analyses ( Thorne and Fingleton, 2006) and for analyses requiring the use 
of counterfactual data (O’Donoghue, 2017). The generation of forest and agricultural income and 
carbon streams in this analysis builds on the farm afforestation microsimulation framework devel-
oped by Ryan and O’Donoghue (2019), and the ForBES (Forest Bio-Eeconomic system model) Ryan 
et al. (2018) by including a carbon sub-model to estimate forest and agricultural carbon, namely the 
(carbon) C-ForBES model.

C-ForBES first estimates the private forest income streams associated with planting one hectare 
of SS forest in 2015, for the land types represented by the Teagasc NFS soil codes. In modelling 
the replacement of a hectare of an agricultural enterprise with one hectare of forest, a mechanism 
is necessary to relate the productive potential and physical constraints of individual farms to their 
forestry potential. This is achieved as described in Ryan et al. (2018) using a classification developed 
by Farrelly (2011), that assigns Sitka spruce Yield Classes (YC) to the Teagasc NFS Soil Code (SC) used 

5.	 Annual equivalised (AE) NPV (per hectare) = ‍
r.NPV

1−(1+r)n ‍ and may not be equal to an average over time.
6.	 http://www.epa.ie/pubs/reports/air/airemissions/ghg/nir2015/

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/environment
https://microsimulation.pub/subjects/methodology
https://doi.org/10.34196/ijm.00232
http://www.epa.ie/pubs/reports/air/airemissions/ghg/nir2015/


 
Research article

Environment; Methodology

Ryan and O’Donoghue.	 International Journal of Microsimulation 2021; 14(1); 102–134	   DOI: https://​doi.​org/​10.​34196/​ijm.​00232� 109

to represent the dominant soil class in the NFS. Using this classification, the mosty productive YC 24 
is associated with the (best) farm soils (SC1) that are suitable for a wide range of uses, while the most 
limiting farm soils (SC6) equate to the lowest yield class (SS YC 14).

Annual agricultural private returns are derived using the Teagasc NFS 2015 dataset, which is nationally 
representative by system and size. C-ForBES incorporates this income foregone as a cost, which is held 
constant in each year of the forest rotation. A discount rate of 5% is used to generate the NPV of private 
income streams, which are presented in terms of annual equivalised (AE) NPV of income (as annual equiv-
alised NPV may not be equal to an average over time). In the next stage, agricultural GHG emissions, 
(methane ‍

(
CH4

)
‍ nitrous oxide (‍N2O‍) and carbon dioxide (‍CO2‍) are estimated at individual farm level.

3.2. C-ForBES Agricultural GHG emissions estimation
In order to estimate the emissions per hectare, the average livestock density per hectare (taking soil 
code into account), is calculated using methodologies consistent with the Teagasc NFS. Displaced 
agricultural emissions are calculated for tillage and for each of the livestock systems (dairy, cattle 
and sheep) on a per animal basis (taking soil code into account). Per hectare livestock emissions are 
derived using Teagasc NFS methodologies and animal numbers and age categories from the 2015 
Teagasc NFS, providing livestock equivalent units (LU) per ha (one dairy cow equals 1 LU ﻿‍ha−1‍). NIR 
(2018) system-specific emission factors (EF) for methane (‍CH4‍) and ‍N2O‍ emissions for tillage, livestock 
grazing and manure management practices, fertiliser inputs and fuel and electricity usage are then 
applied. Tables A2; A3 (Appendix 1) present the agricultural activity data by farm system and soil 
code and Table B1 presents the 2015 emission factors from the common Reporting Framework used 
by the EPA National Inventory Reports. Methane and nitrous oxide are converted to carbon dioxide 
equivalent CO2e (a measure used to compare the emissions from various greenhouse gases on the 
basis of their global-warming potential (GWP) where the GWP for methane is 25 and for nitrous oxide 
298) and the results are presented in Table 1.

Next, C-ForBES estimates carbon in forest soils, live biomass, dead organic matter and harvested 
wood product pools. As carbon gains and losses can vary considerably depending on forest manage-
ment practices, for transparency purposes, this analysis documents all relevant assumptions and 
equations in Table B1 (Appendix B) (denoted by [ ]). Forest management assumptions [1] are those 
used in the ForBES model and based on the Teagasc FIVE (Forest Valuation and Investment Evalu-
ator) (see Ryan et al., 2016). Forest subsidies [2] are provided by the ForSubs model (Ryan et al., 
2014). Timber volumes are derived using the merchantable timber volume (MTV) from the Edwards 

Table 1. Agricultural Carbon Emission Factors and GHG equivalent conversions

Energy 
CO2 Energy CH4 Energy CH4 CH4 Agri CH4 Total CO2 Total CO2e

tCO2/€ tCH4/€ tCO2e/€ tCH4/head/yr tCH4/head/yr tCO2e/head tCO2e/LU

Dairy 0.124 0.00012 3.129 3.129

Cattle 0.051 0.00013 1.308 2.975

Sheep 0.006 0.00001 0.152 0.684

Horses 0.020 0.00015 0.544 1.238

Pigs 0.006 0.00003 0.262 1.176

Poultry 0.000 0.000001 0.00590 0.006

Fuel 0.003 0.00000154 0.00000015

Fertiliser 0.000032

Crops 0.00000041

CO2 equiv 
conversion 
factor

1 25 298 25 298

Source: Common Reporting Framework 2015[6]
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and Christie (1981) yield models for relevant yield classes. Establishment and reforestation costs [3] 
are derived from Teagasc FIVE. Roundwood from thinnings and final harvest is assumed to be sold 
standing and income projections are derived using MTV and published timber prices [4].7 Several vali-
dations and sensitivity analyses and undertaken. In estimating the social value of carbon, C-ForBES 
replaces the afforestation subsidy with a carbon subsidy, based on carbon values in future periods. 
Finally, environmental consequences of farm afforestation are examined, namely the magnitude of 
the substitution effect of replacing one hectare of livestock (and the associated emissions) with one 
hectare of trees.

3.3. C-ForBES Forest Carbon Estimation
For UNFCCC reporting purposes, Ireland adopts a long-term gains and losses approach in National 
Inventory Reports (NIR) based on forest and agriculture activity data supplied by government agen-
cies, where national carbon stock changes (CSC) over time are reported annually for all sectors nation-
ally. In this study however, the focus is on the net carbon implications of a land use change from 
agriculture to forestry where future values and costs are discounted to a given year (2015) on a per 
hectare basis. Where possible and/or feasible, the study utilises the relevant forest and agriculture 
emission/sequestration factors using the information provided in NIR. Taking the long-term nature of 
carbon losses and gains into account, this analysis is undertaken for a 200 year period.

Noting the considerable variability in the literature in relation to the parameters and assumptions 
used for forest carbon estimation, sensitivity analysis of the variability in some of these parameters 
was undertaken. We reference the assumptions and carbon emission/sequestration factors used in 
this analysis in the Appendix, along with differing assumptions as used in two particularly relevant but 
diverse analyses: the Bateman and Lovett (2000) paper - an economic and GIS analysis of the valua-
tion of carbon sequestered by Sitka spruce and Beech in Wales and the Irish National Inventory Report 
(NIR, 2018) - the national accounts framework for GHG emissions reporting (1990-2016) to the United 
Nations Framework Convention on Climate Change (UNFCCC). Forest carbon is thus estimated for 
each of the six carbon pools.

According to Wellock et al. (2011) there is little change in soil organic carbon (SOC) following 
planting of forests on (formerly grassland) mineral soils, although there is a gradual build-up of 
carbon over time. Afforestation on organic soils on the other hand, can result in significant emissions 
(Byrne and Farrell, 2005) that are influenced by water table, soil depth and weather. In reviewing 
the literature however, values for carbon change in soils vary considerably in different analyses. The 
soil carbon emissions factor (EF) has increased over successive Irish NIRs, but are lower than those 
assumed by Bateman and Lovett (2000, p. 316). While considerable historic planting was under-
taken on organic soils in Ireland, current forest policy limits afforestation on peats in environmentally 
sensitive areas. As there are insufficient data in the Teagasc NFS in relation to the soil composition 
of individual farms, this analysis makes the simplifying assumption of planting on mineral soils only. 
However, a sensitivity analysis of planting on 
peats is included (Table 2) using the NIR (2018) 
EF for peats [6].

This section describes the carbon storage 
per hectare in SS forest livewood biomass (both 
above and below ground), which is estimated 
where possible using country specific parame-
ters from the 2018 NIR for yield classes 14-24. 
Total carbon stock (C) is estimated over succes-
sive forest rotations from equation 1:

	
‍C =

∑n
i=1

{
Vi · Di · BEFi · CF

}
· P‍� (1)

7.	 The ‘standing’ price is the residual price paid to the forest owner, net of harvesting and timber haulage costs

Table 2. Private Returns to Planting SS Forest in 
2015 (annual equivalised (AE) of Average NPV 
per ha) at 5% discount rate

Yield Class Average AE of NPV (€ ﻿‍ha−1‍)

24 563

20 473

18 425

14 355

Source: C-ForBES
Carbon Models, Assumptions and Validation
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First, the MTV per hectare (denoted by Vi) is derived from the Edwards and Christie (1981) forest 
yield models. However as these models don’t include early annual growth rates, a sigmoid function 
is utilised to interpolate growth up to the age of first thinning [7]. The carbon mass of live biomass 
is calculated is the product of volume (MTV), wood density [8] (ratio of oven dry weight of timber to 
green volume (‍Di‍) and carbon fraction (‍CF‍) [9] ,which is generally about 50% of wood biomass) (Dewar 
and Cannell, 1992).

The dynamic BEFs [10] used in the NIR (2015), derived from research conducted by Black et al. 
(2004) are used in this analysis. However a sensitivity analysis using both static and dynamic BEFs is 
also undertaken (Table 3). P [11] is the productive forest area.

As only a proportion of carbon from the above ground part of the tree is used in harvested wood 
products, we divide total carbon between above ground ‍CAG‍ and below ground ‍CBG‍:

	﻿‍ C = CAG + CBG‍� (2)

The share of the below ground carbon is defined by the root ratio parameter (denoted by ﻿‍R‍). In 
general, broadleaf species have a larger root mass than conifers (Morison et al., 2012). This analysis 
uses the NIR (2015, 2018); country specific ratio for SS [12] (Black et al., 2009).

The estimation of live biomass carbon relates to above ground biomass:

	﻿‍ VEC,i = Vi ·
(

1 − R
)
‍� (3)

Therefore, we use an adjusted version of the carbon equation to differentiate above ground (equa-
tion 4):

	﻿‍ CAG =
∑n

i=1
{

VEC,i · Di · BEFi · CF
}
· P‍� (4)

and below ground carbon stocks (equation 5):

	﻿‍ CBG =
∑n

i=1

{ VEC,i(
1−R

) · R · Di · BEFi · CF
}

· P‍� (5)

The DOM (dead organic matter) pool is comprised of litter and deadwood. Litter [13] is modelled 
according to algorithms outlined in NIR (2018) and represents the transfer of carbon from the above 
ground pool to the litter pool, based on the leaf/needle biomass and the foliage turnover rates (6.7 
years for conifers and annually for broadleaves (Tobin and Nieuwenhuis, 2007). Litter is assumed to 
decompose at a rate of 14% per year (NIR, 2018-p 222).

The carbon inputs to the deadwood [14] component of DOM in NIR (2018) DOM in NIR (2018) 
include tree mortality, tree roots and harvest losses. We follow the assumptions of Black (2016) of 
a tree mortality rate of 1.6% of volume per year, with dead trees decomposing at the same rate as  
 

Table 3. Average Private Returns (Gross Margin € ha−1) to Agriculture by Soil Code and Farm System 
(2015)

SC YC Specialist Dairy Cattle Rearing Cattle Other Sheep Tillage

1 24 1566 1029 996 954 1098

2 24 1181 855 882 1066 1186

3 20 1145 766 764 740 1103

4 20 1082 656 878 859 803

5 18 670 497 550 471

6 14 584 583 356 681

All All 1237 784 867 811 1114

Source: Teagasc NFS (2015)
Note: SC: Teagasc NFS Soil Code (1 – Best, 6 – Worst), YC: Forest Yield Class
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deadwood i.e. 14% per annum.8 Although beyond the scope of this analysis, the NIR reports the 
gradual accumulation of DOM, which can be an important component of carbon stock change over 
long time horizons.

Carbon is also transferred between DOM pools through complex mechanisms including decay, 
transfer and disturbance, however, these transfers are beyond the scope of this analysis.

At the point of thinning or final harvest ‍Hi‍, harvest losses (waste) ‍Li‍ [15] are incurred and are assumed 
to be oxidised. These losses can be significant, particularly at first thinning and it is important to 
adequately take account of these losses to the system (Ryan et al., 2016). The above ground biomass 
‍CAU‍ remaining on the site and available for removal from the forest therefore is:

	﻿‍ CAU = CAG ·
(

1 − Li
)

=
∑n

i=1

{
VEC,i · Di · BEFi · CF

}
· P ·

(
1 − Li

)
‍� (6)

Energy wood is considered to be immediately oxidised to the atmosphere [16] and accounts for 
a significant proportion (34%) of the biomass C removed from forests, according to the Knaggs and 
O’Driscoll (2017) ‘Wood Flow’ report.

A significant amount of non-forest carbon is stored in harvested wood products (HWP) for differing 
lengths of time, depending largely on the end-use and its half-life (IPCC, 2006). The inflow to HWP 
employed here is modelled as:

	﻿‍ Inflow = CAU ·
(
1 − Ei

)
‍� (7)

where ‍Ei‍ represents wood energy losses. The proportions of sawnwood, wood-based panels and 
paper and paper-board making up the HWP on an annual per hectare basis are taken from NIR (2018) 
[17]. Saw-milling losses are taken into account on the basis of the Knaggs and O’Driscoll (2017) 
report [18]. In estimating the liberation of carbon from HWP we follow the method of Pingoud and 
Wagner (2006) which is used in NIR (2018) as follows:

	﻿‍
CHWPj

(
i + 1

)
= e−k · CHWPj

(
i
)

+

[(
1− e−k

)

k

]
· Inflow

(
i
)
‍�

(8)

This analysis makes the simplifying assumption that all extractions from forests have the same 
share of final uses. It is likely however that a high proportion of early thinnings are used for energy, 
while wood from later thinnings and clearfell is more likely to be used for longer half-life HWP such as 
sawn-wood and wood-based panels. More comprehensive and further research would be required to 
disaggregate these allocations, however, sensitivity analyses of different value chain assumptions are 
undertaken in Appendix 3.

Combining the carbon pools, total forest carbon stock is expressed as tCO2 ha-1 yr-1 (using IPCC 
conversion factors [19]) to be comparable with agricultural emission metrics.

4. Data and Summary Statistics
The primary data source in this paper is the Teagasc NFS, which collects detailed information from 
a representative sample of farms and is Ireland’s input to the EU Farm Accountancy Data Network 
(FADN). Using data for 2015, agricultural cost and revenue streams are generated for each of six 
agricultural systems (dairy, cattle rearing, cattle other, sheep, tillage and mixed livestock) on six NFS 
soil codes.9 C-ForBES links these agricultural data with the forest yield classes (Edwards and Christie, 
1981) using the classification described earlier and forest management costs and revenues in Teagasc 
FIVE (Teagasc, 2012). Table 3 describes the average agricultural gross margin (including subsidies) 
per hectare for the livestock farm systems by soil type and corresponding yield class. There is a broad  
 

8.	 We do not assume a difference between thinned and non-thinned forests, although this is indirectly captured 
in the growth curves.
9.	 Given the relatively small size and heterogeneity, the results of the Mixed Livestock system are not reported 
here
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correlation between soil code and the gross margin per hectare as the highest gross margins are 
achieved on dairy and tillage farming (particularly on the less limiting soil codes), while cattle and 
sheep farming have lower gross margins per hectare.

Table 2 reports the average return per hectare from planting Sitka spruce (SS) for a range of yield 
classes, reflecting the opportunity cost of agricultural income foregone. The impact of better quality 
land as represented by high yield class is clearly evident.

4.1. Carbon Models, Assumptions and Validation
The calculation of carbon sequestration in forests is sensitive to the data, yield model and forest 
management assumptions used. A range of methodological assumptions used in different carbon 
modelling approaches is examined as part of this study and presented in Appendix C, showing vari-
ability in above and below ground carbon sequestration biomass inputs and carbon liberation from 
HWP and the magnitude of carbon losses from harvesting and from energy wood. Such variability 
(particularly in relation to losses from harvesting and wood energy and the impact on long-term 
sequestration in HWP) has considerable impacts on carbon sequestration and loss, with consequent 
impacts on the social value and the net carbon impact of the land use change from agriculture to 
forestry. In order to provide clarity and transparency in the modelling approach utilised in this study, all 
forest management assumptions, information on parameters such as productive forest area, species, 
species mix, rotation length, allocation of timber to different end-uses and other practical aspects of 
forest management are documented in Table B1 (Appendix B).

5. Results and Discussion
In this section, the results of the carbon sequestration analysis and are presented and discussed in 
the context of the modelling assumptions used for forest carbon pools and validation against other 
analyses. For simplicity purposes, ‘No Thin’ scenarios are presented, unless stated otherwise. Next 
we present the private and social returns to the land use change with sensitivity analyses around the 
parameters used and lastly, the distributional analysis is presented.

Figure 3. Carbon (C) Sequestration/Loss for No Thin (NT) Yield Class 18 over 200 years
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5.1. Carbon Sequestration
First, we illustrate the accumulation and loss of carbon over a 200 year period for Sitka spruce yield 
class 18 (no thin) in Figure 3. The largest increase in carbon is evident in the above ground livewood, 
particularly in the early years, with an acute loss of carbon at the point of harvesting, when timber is 
removed from the forest. The lower rate of sequestration in the below ground livewood reflects the 
80/20 above/below ground ratio.

At clearfell (final harvest), the above ground biomass declines to zero, while the below ground 
biomass transfers slowly to the DOM pool. There is an immediate decline in carbon in HWP at harvest, 
relative to above ground livewood, as just over a third of the livewood is used for energy (Knaggs 
and O’Driscoll, 2017) and is immediately oxidised. Harvesting (roundwood) losses are also incurred 
during the harvesting process.

In contrast to the no thin scenario presented in Figure 3, on thinning (periodic removal of trees), 
there is an initial drop in above ground biomass, followed by a subsequent increase in growth (and 
carbon sequestration) due to the greater availability of light, moisture and nutrients for the remaining 
trees. As each thinning occurs, livewood carbon declines and the cumulative carbon in HWP increases, 
albeit declining if the biomass is combusted (oxidised). An important difference between thinned and 
unthinned forests is that harvest losses at thinning can be substantial, particularly in the case of first 
thinning.

5.2. Private and Social Returns to Land use Change from Agriculture to 
Forestry
In this section we examine both the private and the social (private + public) return to farm afforesta-
tion. In order to model the social impact of land use change, it is necessary to include the alterna-
tive land use, namely agriculture, and to combine the private economic components with the public 
component. The definition of social return can be quite broad incorporating all monetary and non-
monetary aspects, whereas the private return to a landowner represents only the life-cycle monetary 
impact of moving from agriculture to forestry. However this clearly ignores significant public good 
impacts in relation to carbon sequestration. There are of course other aspects of the return, including 
the private return to other value chain actors such as timber mills and other ecosystem services such as 
biodiversity or water quality. To keep the analysis tractable but useful, we adopt a narrower definition 
of social return to a land use change, i.e. the combination of the private return to the landowner plus 
the value of the net carbon sequestration of the land use change.1

Table 4 describes the economic dimension of planting one hectare of forestry. Columns A, B, C 
and D respectively report market gross margin (MGM) and direct payments/subsidies for agriculture, 
forest MGM and forest subsidies. As expected, MGM for agriculture and forestry is correlated with 
soil type, while agricultural subsidies have a redistributive focus and are uncorrelated with soil type. 
Forest subsidies are paid as compensation for loss of agricultural income and as an implicit incentive 
for the provision of forest ecosystem services and are also uncorrelated with soil type.

 Table 4. Economic Components of Agriculture and Forestry (2015) (Annual Equivalised NPV per ha 
(€)

Soil Code Agriculture Forestry

Mkt Gross Margin /ha (A) Subisides /ha (B) Mkt Gross Margin /ha (©) Subsidies /ha (D)

€ € € €

SC1/YC24 1200 366 224 306

SC2/YC22 792 388 224 306

SC3/YC20 803 342 154 302

SC4/YC18 731 351 154 302

SC5/YC16 356 314 124 300

SC6/YC14 258 326 52 298

Average 878 359 155 296
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The carbon sequestration/emissions resulting from planting one hectare of SS forest replacing agri-
cultural enterprises, are calculated by applying the carbon dioxide equivalent coefficients per hectare 
from Table 1 to farm-level activity data (both direct and indirect emissions) and forest life-cycle (200 
years) data. In facilitating comparisons between agriculture and forestry, life-cycle sequestration from 
forestry and emissions from agriculture are annualised using a 5% discount factor to produce the 
average discounted tonnes of carbon dioxide equivalent per hectare ‍

(
tCO2e

)
ha−1

‍ for the farm systems 
and soil types. These are reported as average annual equivalised values in Table 5 (columns E and 
F). The components that result in these returns are also reported, showing that for higher quality soil 
types, the quantity of carbon sequestered per hectare is almost twice that of the animal emissions 
displaced. For SC5, the ratio is closer to a factor of three. The implication here is that replacing agri-
culture with forestry on the best land would result in a reduction of net carbon dioxide emissions of 
24.1 tCO2e on average over the life-cycle. In terms of the corollary (replacing agriculture on poorer 
soils with forestry), the net reduction or sequestration is lower, because of (a) the lower carbon seques-
tration from forests and (b) because the substituted enterprise had lower emissions.

However, we would also like to examine the impact of taking carbon into account in the returns 
to planting. In generating the social return to planting, as the afforestation subsidy (D) is not a direct 
measure, it is replaced with a carbon subsidy (carbon emissions (agriculture E and forestry F) x Cost 
per tCO2, for a range of carbon values. There is not currently a carbon instrument in place, (as the 
inclusion of carbon in incentives could act as a negative driver if farm forest owners were fined for 
carbon losses to the atmosphere on harvesting), thus the more pragmatic solution is to provide an 
indirect subsidy at planting and tax-free incentives for timber sales. Therefore as we not modelling a 
behavioural response, static carbon values are included.

Table 5 reports the average private and social returns from the afforestation of one hectare of 
agricultural land and shows that on average, the private return to forestry is lower than the return 
from agriculture in the current policy environment, but becomes increasingly positive when increasing 
carbon values are substituted for afforestation premium. At low values of €20 and €32, (similar to 
the lower bound carbon price in the national agricultural GHG Marginal Abatement Cost (MAC) 
curve (Black et al., 2004) of €25 per tonne of CO2, the social return for planting a hectare of forest 
exceeds that of agriculture on the poorest soils. Once the carbon value is increased to €100 and €163 
(reflecting the Irish government shadow price of carbon for 2030 and 2040 respectively) all soil codes 
have a higher social return from forestry than from agriculture, with the highest returns on the most 
productive soils. All values are discounted using a 5% discount rate

10.	P is the carbon price (cost per tCO2)
11.	F is average annual sequestration from conversion to forestry
12.	E is annual emissions reduction from displacing agriculture
13.	Note: A, B, C, D from Table 4

Table 5. Average Annual Equivalised Social Return to Planting one hectare of Unthinned Forest 
(2015) Displacing Agriculture

Soil Code Private Return10 Agriculture Forestry Social Return

(C+D) – (A+B) (€/ha) E11 F12 C – (A+B) + (F-E)*P13 (€/ha)

tCO2 Value (P) €0 tCO2 tCO2 €20 €32 €100 €163

SC1 1036 -9.2 14.9 -556 -268 1365 2878

SC2 651 -8.4 14.9 -185 95 1680 3148

SC3 690 -7.5 11.8 -304 -72 1239 2455

SC4 627 -7.4 11.8 -242 -11 1298 2511

SC5 246 -4.5 10.8 59 242 1281 2243

SC6 234 -4.9 7.8 19 171 1031 1828

Total -8.0 13.4 -359 -103 1347 2691

Note: No-thinning assumed; BEF Factors from the 2015/18 National Inventory Reports are used;
All values are discounted using a 5% discount rate. Sensitivity Analyses
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5.3. Sensitivity Analyses
The analysis undertaken here assumes the same allocation of wood to the value chain from thinnings 
and from final harvest; in other words, the share of wood uses allocated to energy, sawn wood and 
wood-based panels is consistent across thinnings and final harvest. Actual allocations can vary consid-
erably, depending on management regime, market conditions and proximity to wood energy and 
sawnwood processors. In reality, a large proportion of early thinnings is likely to be used for wood 
energy, with the proportion allocated to sawnwood increasing as tree size increases. However there 
are no data sources for these allocations, therefore, we would like to test the impact of allocating all 
thinnings to wood energy.

In Table 6, the impact of different assumptions re the allocation of thinnings to either wood 
products or energy are presented for two extreme assumptions: (a) all harvested wood (thinnings 
and clearfell) is allocated proportionally to energy and to harvested wood products and (b) all thin-
nings are allocated to energy and immediately combusted. These assumptions can be regarded as 
an upper and a lower bound. We see that when all thinnings are used for energy, the amount of 
clearfell wood used for energy decreases by about 40%. The annual equivalised total tCO2 is about 
11% higher for the original assumption, reflecting greater earlier storage than when all thinnings 
are used for energy. If the values were undiscounted, there would be no difference, as the same 
amount of wood is burnt for energy under both scenarios. In order to get a more precise estimate, 
a more detailed evaluation of different wood flows over different parts of the life-cycle would be 
required.

The impact of the land use change from agriculture to forestry is at the core of this analysis. While 
afforestation on blanket peats is no longer grant-aided, many farms have areas of peaty (organo-
mineral) soils. However, the available farm-level data are insufficient to distinguish between peaty and 
minerals soils. C-ForBEs assumes that the SS forest is planted on mineral soils, however we are inter-
ested in the sensitivity of planting on peat and mineral farmland. Table 7 highlights the lower carbon 
sequestration on peats by about 2tCO2 per ha, given soil carbon losses at the time of planting due to 
drainage on peaty soils.

The use of market price for timber and carbon values can also lead to different conclusions. The 
market prices used in this study are based on ten year relatively stable average prices [4], while the 
carbon values used are the official national policy, setting out carbon prices [20] for the next 20 years. 
In order to account for this risk, analysts use higher discount rates where risk is considered to be 
super-normal. Thus the discount rate can have a considerable impact on the social return to planting. 
The analysis thus far assumes a 5% discount rate. Table 8 highlights how small changes (at different 
carbon values) can have large impacts on the social return. The share of farms where the social return 
is higher for forestry increases with carbon value and for lower discount rates. At a carbon value of 
€32 and 4% discount rate, 82% of farms on average have a higher social return from forestry. As the 
discount rate increases, the share of farms that have a higher social return from forestry falls, but 
remains above 70% even at 7% discount rate. For lower discount rates, the proportion is higher for 
almost all farms.

Table 6. Comparing the Annual Equivalised tCO2 for Thinned Forests by Soil Type if all thinnings are 
used for energy

Soil Code Equal Allocation from Thinnings and Clearfell to Energy Thinnings only Allocated to Energy

1 10.77 9.60

2 10.77 9.60

3 9.04 8.16

4 9.04 8.16

5 9.14 8.37

6 5.37 4.83

Average 9.98 8.95

Note: 2015/18 National Inventory Report Assumptions

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/environment
https://microsimulation.pub/subjects/methodology
https://doi.org/10.34196/ijm.00232


 
Research article

Environment; Methodology

Ryan and O’Donoghue.	 International Journal of Microsimulation 2021; 14(1); 102–134	   DOI: https://​doi.​org/​10.​34196/​ijm.​00232� 117

5.4. Distribution of Private and Social Returns
This paper thus far describes average carbon figures for different soils and sectors. However, these 
averages mask a wide distribution.Next we look at the distribution of farms, with Table 9 presenting 
distributional assumptions in relation to private returns and social returns. On average 32.4% of farms 
have positive private returns to planting, including forest subsidies. Replacing the afforestation subsidy 
with low carbon (subsidies) values of €20 and €32 per hectare, and using the most recent NIR (2015) 
assumptions for biomass expansion factors and also incorporating agricultural subsidies, the share of 
farms with a positive social return is 30.4% and 46.6% respectively. Using a carbon value of €100 per 
hectare, the share rises to 96.5%, while at a carbon value of €163 per ha, nearly all farms (99.9%) have 
positive social returns.

As a sensitivity analysis, we utilise earlier NIR assumptions (see also Table C2), finding an impact 
of about five percentage points for lower carbon values. We also test the sensitivity of whether affor-
estation occurs on land with or without agricultural subsidies, finding an unsurprisingly high impact.

5.5. Impact of substitution of trees for livestock - area of livestock 
emissions offset by a hectare of different types of afforestation
Farm afforestation is proposed as the largest potential mitigation measure for increasing live-
stock emissions in Ireland (Lanigan et al., 2019), thus we investigate the environmental impact 
of the land use change from agriculture to forestry by examining the livestock emissions that 
could be displaced by the carbon sequestered on one hectare of SS forest, measured in terms 
of land area (hectares of forest) and livestock emissions (LU per ha). For simplicity, results are 
reported in Table 10 for no thin (NT) forests for (a) planting a forest only - without accounting 
for the displaced livestock emissions from a land use change (No LUC), and (b) a land use change 
accounting for both forest carbon sequestration and the displacement of GHG emissions from 
agriculture.

Relating the livestock units per hectare (and the forest yield classes) across the soil codes, 
Table 10 represents the area (ha) of afforestation needed to offset emissions from livestock and 
reports that on average, the emissions from 1.68 hectares of land (with animals) are equivalent 
to the carbon sequestration from one hectare of (SS) forest (without land use change). When the 
displacement of livestock is taken into account, net sequestration increases to the equivalent of 
2.68 hectares. This ratio increases with stocking rate, with a 25% gap between the highest and 
lowest soil codes, reflecting a strong correlation between animal stocking rate and tree growth, so 

the area is similar across all soil types, except 
soil class 5, although this may be due to lack 
of resolution of soil data at farm level. The 
corollary in terms of livestock units,14 is that 
one hectare of forestry displacing agriculture 
(with LUC), replaces 3.79 livestock units per 
hectare on average, with the number of live-
stock units displaced varying from 2.34 for 
the poorest soil types to 4.18 on the best soil 
types, and 2.38 LU per ha on average without 
LUC. Finally, we note that one hectare of 
thinned forest displaces fewer animal emis-
sions than an unthinned forest, due to the 
lower sequestration associated with thinned 
forests. It should be noted also that this infor-
mation relates to all land, including tillage. As 
tillage land is primarily used for animal feed, 
this is a reasonable assumption.

14.	1 livestock unit represents 1 cow

Table 7. Total Annual Equivalised tCO2 Forest 
Carbon Sequestration for Mineral and Peat Soils 
by Yield Class

Yield Class Mineral Peat

24 12.69 10.56

24 12.69 10.56

20 10.44 8.32

20 10.44 8.32

18 9.34 7.21

14 7.60 5.48

Average 11.56 9.43

Note: For simplicity purposes in peat calculations, 
these values are calculated using EFs from NIR (2012)
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Table 8. Share of Farms with greater social returns from Forestry than from Agriculture (Annual 
Equivalised NPV-2015) for a range of Discount Rates

Discount Rate 0 1 2 3 4 5 6 7

Carbon Value (€): 32

Soil Code

1 1.000 0.998 0.958 0.846 0.720 0.643 0.597 0.563

2 1.000 1.000 0.991 0.940 0.923 0.895 0.853 0.824

3 1.000 1.000 0.955 0.868 0.805 0.755 0.736 0.724

4 1.000 1.000 0.969 0.922 0.844 0.814 0.779 0.741

5 1.000 1.000 0.979 0.932 0.919 0.912 0.912 0.903

6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Total 1.000 0.999 0.969 0.892 0.820 0.774 0.739 0.712

Distribution of Private and Social Returns

Table 9. Share of Farms with a positive Private and Social return to Forestry by BEF Assumption and 
inclusion of Forest Subsidy

Private Return Social Return

Carbon value (€) 0 20 32 100 163

BEF (NIR, 2012)

Incl Farm Subsidy 0.324 0.264 0.427 0.943 0.998

Excl Farm Subsidy 0.551 0.577 0.672 0.983 0.999

BEF (NIR, 2015)

Incl Farm Subsidy 0.324 0.304 0.466 0.965 0.999

Excl Farm Subsidy 0.551 0.594 0.697 0.991 0.999

Impact of substitution of trees for livestock

Table 10. Area of livestock production that could be offset by one hectare of SS, at different 
livestock densities (LUha−1), with/without accounting for land use change (LUC) by soil code

Soil Code Stocking Rate

Area (ha)offlivestock 
displaced by one ha 

of forest

Area (ha) 
of livestock 
displaced 

by one ha of 
forest

LU displaced 
per Ha of 

Forest

LU displaced 
per ha of 

Forest

LU per 
Ha of 
Forest

LU per Ha

No LUC (not 
accounting for 

displaced emissions)

With LUC 
(accounting 

for displaced 
emissions) No LUC

With LUC
(No Thin)

With LUC 
(Thin)

1 1.57 1.62 2.62 2.56 4.13 3.03

2 1.52 1.76 2.76 2.67 4.18 3.03

3 1.33 1.59 2.59 2.12 3.45 2.69

4 1.36 1.59 2.59 2.17 3.52 2.75

5 0.87 2.38 3.38 2.06 2.93 2.29

6 0.90 1.61 2.61 1.44 2.34 1.85

Average 1.41 1.68 2.68 2.38 3.79 2.84
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6. Conclusions
In this paper, we describe in detail the development of a microsimulation model to simulate the 
life-cycle impact of the incorporation of carbon emissions in the conversion of agricultural land to 
forestry, enabling the distribution of wider social returns to be modelled in addition to the private 
return. The paper is novel in that it brings together the literature on land use change, which focuses 
mainly on the social return to land at an aggregate spatial level, and farm level simulation analysis 
that focuses on private returns. Given the importance of afforestation as a driver of carbon seques-
tration and a mitigation measure for agricultural emissions, there is a policy imperative to combine 
both dimensions.

Reflecting the negative and positive externalities associated respectively with agriculture in terms 
of carbon emissions and with forestry in terms of carbon sequestration, the private returns for both 
land uses were modelled along with a measure of the value of the public good provision in terms of 
carbon sequestration. These reflect respectively the return from the market and the returns to society, 
accounting for carbon emissions and sequestration.

The analysis highlights that unthinned livewood is the largest forest carbon pool while the HWP 
pool is the largest non-forest pool and is perhaps where the greatest advances could be made in rela-
tion to the substitution of long-lived sawnwood products for concrete and steel, however the model-
ling of the substitution effect of replacing concrete and steel is beyond the farm level focus of this 
paper but is the subject of future work.It also highlights the influence of soil quality on forest carbon 
sequestration and on livestock emissions. In considering the distributional impact of the private and 
social returns to agriculture, this paper finds significant heterogeneity between the private and social 
return across farms, with the incorporation of a value for carbon resulting in many more farms with 
positive social return than private returns.

While there is a large literature on ecosystem service provision from forests (Temperli et al., 2020; 
Jönsson et al., 2020; Dunford et al., 2015) the contribution of this paper focuses more narrowly 
on (a) the relative contribution of an afforestation-focused land use change from agriculture, (b) the 
incorporation of this land use change within a microsimulation framework to enable the heteroge-
neity of impacts to be considered and (c) the incorporation of both market and non-market impli-
cations. Each of these issues have been considered separately, but not together. An advantage of a 
microsimulation approach is the capacity to integrate analysis in different dimensions and then to run 
simulations to draw cross-cutting conclusions. This study examines one specific ecosystem service in 
quantifying social returns, as this is the dominant focus of current policy discussions. Future research 
could broaden the scope of this study to incorporate other forest ecosystem services, however the 
incorporation of wider value chain considerations is beyond the scope of this study.

Recognising the variety of assumptions that are used in modelling land use change to forestry 
and their impacts on net sequestration (Soimakallio et al., 2021), all assumptions used in what is a 
complex analytical problem were documented, components were validated against other analyses 
and the sensitivity of results to different assumptions was tested. In comparing the growth curves 
from the UK-based Edwards and Christie (1981) stand-level yield models, with more recent growth 
curves based on Irish forest inventory data and single-tree plots (Teagasc, 2021), we see that the end 
point in terms of tree biomass is similar, but the growth occurs earlier in the Irish curves. We found 
that our harvested wood products simulation based on the Irish NIR is similar to an alternative method 
used by Bateman and Lovett (2000). However, we note that differences in assumptions in relation 
to harvest losses and the allocation of harvested wood to energy can result in sizeable impacts on 
carbon storage.

Given the variety of assumptions used in this type of inter-disciplinary analysis, there is merit in 
a more coordinated approach, both nationally and internationally in relation to model assumptions. 
The IPCC makes assumptions at a particular level, but there is a need for greater consistency in more 
detailed assumptions. For example, at national level, agreement around what happens at the point 
of harvest in terms of losses at international level, greater consistency in terms of the harvested wood 
value chain and its relationship with the characteristics of the trees in the forest, would both be bene-
ficial to modellers working in this complex field. The US government Interagency Working Group 
(IWG, 2013) on the Social Cost of Carbon (Nordhaus, 2014) provides an influential example of such 
a coordinated approach.
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There are limitations in relation to the modelling approach employed here that relate largely to the 
availability of forestry activity data, as forest data collection was historically focused on the science of 
timber rather than carbon production. The analysis does not take into account the accumulation of 
carbon in soils over very long time horizons. The focus on Sitka spruce forests is also a limitation of 
this analysis, and relates to the robustness of production and economic SS data, compared to other 
conifer and broadleaf species. Thus, this analysis ignores the carbon contribution of broadleaf species 
planted as areas of biodiversity enhancement within Irish forests. However, these limitations do not 
affect the qualitative conclusions of this analysis.

There are currently no policy levers to convert carbon prices to either monetary benefits to forest 
owners or to a cost for farmers, thus there is a challenge to develop policy instruments for the land 
use sector such as the EU Emissions Trading Scheme (ETS) for climate change, in order to address 
undesirable trade-offs between agriculture and forestry as carbon prices rise, or to avoid pressure to 
reduce harvesting to maintain carbon in livewood. Ex-ante analyses using a multi-dimensional models 
such as the model described here can play an important role in testing such scenarios to assist in 
future policy development.

Finally, this paper contributes to the growing field of microsimulation modelling for both envi-
ronmental policy analysis and agricultural policy analysis. Utilising farm survey data that is collected 
uniformly in many countries, whether it be the European FADN or OECD data (for countries such as 
the USA, Australia, New Zealand), and utilising information in relation to afforestation that is available 
as part of national carbon accounting frameworks, this methodology is replicable and scalable to 
other countries. It thus has the capacity to be utilised for ex-ante analyses of afforestation initiatives 
associated with GHG reduction and increased carbon sequestration.
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Appendix A: Agricultural parameters

Table A1. Enteric Fermentation and Nitrous Oxide Emission Factors

CH4 N2O

Enteric Fermentation Manure Management Manure Management (kt)

Emission Factor (kg/head CH4/yr) (kg CH4/head/yr) (kg/N2O/head)

Dairy 113.41 10.30 0.12

Cattle 46.39 4.43 0.13

Sheep 5.61 0.39 0.01

Horses 18.00 1.99 0.15

Pigs 1.33 5.04 0.03

Poultry 0.00 0.22 0.00

Deer and Goats 25.00 1.62 0.12

Source: Common Reporting Framework http://www.​epa.​ie/​pubs/​reports/​air/​airemissions/​ghg/​nir2015/

Table A2. Average LU per Ha by Soil Code

Soil Code Dairy Cattle Sheep

SC1 2.09 1.74 1.62

SC2 2.03 1.48 2.13

SC3 2.00 1.42 1.66

SC4 1.84 1.35 1.25

SC5 1.58 0.73 0.42

SC6 1.14 1.69

Average 2.00 1.45 1.28

Source: C-ForBES

Table A3. Average tCO2 per hectare by source of emissions by Soil Code

Soil Code Dairy Cattle Sheep Fuel Fertiliser Crops

SC1 1.77 4.00 0.21 0.000207 0.001297 0.000019

SC2 0.96 4.00 0.79 0.000190 0.001071 0.000018

SC3 1.15 3.79 0.56 0.000221 0.000937 0.000008

SC4 1.31 3.58 0.38 0.000219 0.000853 0.000003

SC5 0.36 1.42 0.41 0.000080 0.000303 0.000002

SC6 0.00 2.80 0.68 0.000107 0.000378 0.000001

Average 1.24 3.57 0.45 0.000191 0.000993 0.000012

Source: C-ForBES
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Appendix B: Forest Parameters

Table B1. C-ForBES Modelling Assumptions

Model component
C-ForBES parameters and 
assumptions

Comparisons with parameters/
assumptions in NIR (2018) and 
Bateman and Lovett (2000) Additional notes

Scale of analysis
Per hectare net carbon storage 
or emissions in a given year.

Bateman and Lovett (2000): Per 
hectare net carbon storage or 
emissions in one year.
NIR (2018): National Carbon 
Stock Change (CSC) over time.  �

Period of analysis

200 years. To accommodate 
approx. 4 rotations of SS 
(dep on YC) to allow for 
consideration of half-life of 
Harvested Wood Products 
(HWP). Replanting is assumed 
in the year following harvest.

Bateman and Lovett (2000) 
model extends to 1000 years
NIR (2018): Annual CSC 1990 
– 2016  �

Yield Class (YC)

Yield classes14-24 are analysed. 
YC14 is lower bound for 
eligibility for afforestation 
grants and subsidies.

NIR (2018) reports across all 
historic and current YCs.
Bateman and Lovett (2000) 
estimate YC 6 – 24.  �

[1] C-ForBES Forest 
Management
Assumptions derived from 
Teagasc FIVE (see Ryan 
et al., 2018)

[1a] Tree species:
Forest Investment and 
Valuation Estimator (FIVE):
Sitka spruce (SS), which is the 
most commonly planted conifer 
in Ireland.
To reduce complexity a 
simplifying assumption is made 
to model one hectare of pure 
SS (see [2] and [11]) as cost, 
growth and price data in FIVE 
are not as robust for mixtures of 
broadleaf and conifers.
However, productive area is 
modelled at 85% to account 
for broadleaf component. In 
this analysis therefore, carbon 
sequestration from broadleaves 
is not modelled.

NIR (2018) estimates CSC for all 
species planted in Ireland.
Bateman and Lovett (2000) 
model and map C storage for SS 
and Beech in Wales

“The forest must contain a 
minimum of 15% broadleaves 
by area. This can comprise: 
broadleaves planted in broadleaf 
GPC plots of minimum width; 
and/or broadleaves planted as 
part of the 'at least 10% diverse' 
requirement for GPC 3; and/or 
additional broadleaves planted 
for environmental and landscape 
reasons”.
www.​teagasc.​ie/​forestry/​Grants

 �

[1b] Forest Yield:
Merchantable Timber Volume 
(MTV)
(Edwards and Christie, 1981)

NIR (2018) is based on a range 
of models including FORCARB 
(based on Edwards and Christie, 
1981), CARBWARE & Carbon 
Budget Model (CBM) (NIR, 
2019).
Bateman and Lovett (2000): MTV 
from (Edwards and Christie, 
1981) and combine with data on 
carbon storage in Sitka spruce 
(Cannell and Cape, 1991) to plot 
thin and no-thin carbon storage 
curves.  �

 �

[1c] Thinning:
Marginal Thinning Intensity 
(MTI)15 @
5 year intervals from Edwards 
and Christie (1981)

NIR (2018)/Bateman and Lovett 
(2000) also use this static 
thinning assumption.  �

15.	MTI is defined in gross volume terms as 70 % of YC (m3 ha-1 yr-1) (see Ryan et al., 2018).

Continued

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/environment
https://microsimulation.pub/subjects/methodology
https://doi.org/10.34196/ijm.00232
www.teagasc.ie/forestry/Grants


 
Research article

Environment; Methodology

Ryan and O’Donoghue.	 International Journal of Microsimulation 2021; 14(1); 102–134	   DOI: https://​doi.​org/​10.​34196/​ijm.​00232� 127

Model component
C-ForBES parameters and 
assumptions

Comparisons with parameters/
assumptions in NIR (2018) and 
Bateman and Lovett (2000) Additional notes

 �

[1d] Rotation:
‘Reduced rotation’ = (Age of 
max MAI – 20%)16 (Phillips, 
1998; Anon, 1977, ).

NIR (2018)rotation = max MAI 
from CARBWARE (Black, 2016).
Bateman and Lovett (2000) 
estimates felling year (F) based 
on age of max NPV for given 
species, YC and discount rate – 
see Bateman (1996)  �

[2] ForSubs model (Ryan 
et al. (2016)

Forest subsidy:
General Planting Category 
GPC3 (10% Diverse Conifer, 
e.g. Sitka spruce and 10% 
broadleaves)
€510/ha/year - paid annually for 
15 years for first rotation only

GPC 3 – 10% Diverse Conifer/
Broadleaf:
Comprises of a mix of Sitka 
Spruce/Lodgepole pine together 
with at least 10% Diverse conifer 
(approved conifer other than 
SS/LP). Broadleaves adjacent 
to roads and watercourses may 
also form part of this 10% www.​
teagasc.​ie/​forestry/​grants

[3] Costs
Teagasc FIVE (Ryan et al., 
2018)

Ground preparation, fencing, 
planting, maintenance, 
insurance, replanting.  �

[4] Timber prices

Coillte (State forestry body) 10 
year average timber prices
Annual timber price series 
published annually by Irish 
Timber Growers Association 
(ITGA) (see Symons et al. (1994); 
Teagasc (2019))  �

[5] NPV discount rate

The conventional discount rate 
used for forestry in Ireland is 5% 
(Clinch, 1999).

Bateman and Lovett (2000) also 
use a discount rate of 5% for 
forest NPVs.  �

[6] Soil organic matter (SOM)

Analysis assumes land use 
change on grassland on mineral 
soil only with no change in 
SOC.
In the sensitivity analysis of 
planting on mineral or peat 
soils, the coefficients from NIR 
(2012) are used.

NIR (2018) assumes (a) no carbon 
stock change on the planting of 
forests on mineral soils and (b) 
a mean organic soil EF of 0.59 t 
C/ha/year over the first rotation 
(50 years) as organic soils are not 
a source following successive 
rotations (Byrne and Farrell, 
2005).
Bateman and Lovett (2000) 
assume long term net gain 
of soil carbon (50 t C ha-1 on 
mineral soils) or loss (750 t C ha-
1 on peat soils) occurring within 
200 years.

NIR (2018) categorises 
Irish soils into three major 
groupings based on soil carbon 
characteristics. All mineral soils 
are grouped together, while all 
organic soils with an organic 
layer greater than 30 cm are 
classified as peat. Finally, organic 
soils with an organic layer less 
than 30 cm are classified as 
peaty/mineral.
CARBINE (Temperli et al., 
2020): V Changes in soil carbon 
are assumed to take place in 
response to land use change. 
Magnitude and changes over 
time are estimated according to 
soil type (texture) and major land 
use category.

[7] Early growth

We use a logistic function to 
interpolate early growth and 
the growth in 5 year intervals 
recorded in Edwards and 
Christie (1981) models.

NIR (2018) uses a modified expo-
linear growth function (Monteith, 
2002) to simulate early annual 
growth.
Bateman and Lovett (2000) fitted 
an S shaped curve to Edwards 
and Christie (1981) data  �

Carbon mass of Sitka spruce 
(SS)

[8] Basic density 0.387 (NIR, 
2012, p. 123)

[9] Carbon fraction 0.5 (NIR, 
2015, p. 123)  �

Table B1.  Continued

Continued

16.	MAI= Mean Annual Increment (see Ryan et al., 2018)
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Table B1.  Continued

Model component
C-ForBES parameters and 
assumptions

Comparisons with parameters/
assumptions in NIR (2018) and 
Bateman and Lovett (2000) Additional notes

Biomass – above ground

[10] Biomas Expansion Factor 
(BEF) follows NIR (2018) 
methodology.

NIR (2015). A dynamic BEF is 
used in this analysis based on 
species, yield class and growth 
phase. Ranging from a value 
of 2 to 1.68 for lower YCs (14 & 
16), 3 to 1.68 for YCs 18 & 20, 4 
to 1.68 for the most productive 
YCs (22 & 24). A constant BEF 
of 1.68 is utilised once stand 
volume is equal to or greater 
than 200m3ha−1

Bateman and Lovett (2000).
estimated functional 
relationships for livewood. 
MTV is related to total woody 
volume (TWV) by allowing for 
branchwood, roots, etc. (Corbyn 
et al., 1988).

NIR (2018): Based on the model 
developed by Dewar and Cannell 
(1992), (Kilbride et al., 1999) 
used a static value of 1.3 for all 
species, age and yield classes, 
while the 2012 NIR uses a value 
of 1.64. However, since the 
allocation of biomass between 
different forest components is 
dependent on species, yield 
class and the growth phase of 
the forest, current estimates of 
sink capacity have been revised 
to use age and species-specific 
BEF values that include the 
below ground fraction.

[11] Productive area

85% of the area taken out 
of agriculture is classified 
as productive area due to 
mandatory areas of biodiversity 
enhancement (ABE), set-back 
distances for roads, rivers, 
houses, fencing, unplantable 
terrain etc., (Ryan et al., 2018).

In scaling up, NIR (2018) applies 
a 10% area reduction to account 
for open spaces.  �

Biomass – below ground

[12] Ratio of below ground to 
above ground biomass: 0.2
Country specific ratio (NIR, 
2015)  �

DOM

Litter [13 ] LLF represents the 
transfer of carbon from the 
above ground pool to the 
litter pool. It is simulated using 
derived leaf/needle biomass 
(LB) and the foliage turnover 
rates (Ft) from Thorne and 
Fingleton (2006):
LLF = LB × Ft
The Ft rate is assumed to be 
6.7 years for conifer crops 
and 1 year for broadleaf crops 
(Thorne and Fingleton, 2006). 
Needle biomass is calculated 
according to the equation 
defined in Annex 3.4.A.4 of NIR 
(2018):
LB = 0.025 × AB + 0.089 × exp 
(−0.003 × AB)
The litterfall LLF is assumed to 
decompose at a rate of 14% 
per year (NIR (2018) p 222).

NIR, 2018 – p197: Biomass 
carbon losses from the above 
ground biomass pool are 
calculated based on harvest 
(Ltimber), harvest residue 
(LHR), litter fall (LLF), above 
ground losses due to mortality 
(Lmort(AB)) and fire (Lfire):
Ltimber is calculated based 
on the above ground biomass 
removed from harvest,
LHR includes the harvest residue 
representing all stems and 
branches with a DBH less than 
7cm and litter left on site after 
timber is removed
LLF reflects the transfer of carbon 
from the AB pool to the litter 
pool
NIR (2018): Equation from NIR 
(Thorne and Fingleton, 2006) 
(needle turn- over is 6.7 years 
for conifers and annually for 
broadleaves
Calculation of matter from 
equation in NIR, 2018
Decomposition = 14% decline/yr 
p222 NIR, 2018
Bateman and Lovett (2000): litter 
is not modelled

CARBINE (Temperli et al., 2020): 
Litter is not modelled

Continued
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Continued

Table B1.  Continued

Model component
C-ForBES parameters and 
assumptions

Comparisons with parameters/
assumptions in NIR (2018) and 
Bateman and Lovett (2000) Additional notes

 �

Deadwood [14]
Inflow is 1.6%
Decomposition rate is 14% 
decline /year (Carbware)

NIR (2018) Mortality:
Growth, harvest and mortality 
derived from Edwards and 
Christie (1981) described by 
Black et al. (2012).
Net deadwood stock changes 
(CDW) are derived from carbon 
inputs associated with timber 
extraction residue (Ltr), timber 
from mortality (Mtimber), dead 
roots from mortality (Lmort(BB)), 
roots from harvest (LHRroot) 
and carbon loss due to 
decomposition of the new and 
previously existing deadwood 
pool (DDW):
Biomass carbon losses from the 
below ground biomass pool 
are calculated as the sum of 
losses due to death of roots 
after harvest (LHRroot), natural 
mortality of roots (Lmort(BB)) 
and root death following fire 
(Lfire).
Bateman and Lovett (2000): 
Assume 5 year oxidation of 
deadwood  �

[15] Harvest losses

We assume differential harvest 
losses for each harvest as per 
Teagasc FIVE.
Ist Thin – 14% loss of 
Merchantable Timber Volume 
(MTV)
2nd Thin - 12% loss of MTV
Subsequent Thin - 9%
Clearfell/Final harvest – 5%

NIR (2018) assumes static harvest 
losses of 4%

Morison et al. (2012) include 
HL in HWP as they may not be 
immediately oxidised

Wood fuel oxidation [16]

34%
In the 2017 Wood Flow report, 
34% of forest biomass is used 
as wood fuel (Knaggs and 
O’Driscoll, 2017).  �

HWP allocations [17]

ForBES follows Pingoud & 
Wagner (2006) model (2006 
IPCC guidelines)
Assumes the same allocation of 
wood to the value chain from 
thinnings and from final harvest 
(scenario analysis to examine 
alternative scenario).
Allocation of SW, WBP and PPB 
to HWP
SW: 52%, WBP 48%.
PPB: zero (no longer any paper 
production).

Phimmavong and Keenan (2020) 
model (2006 IPCC guidelines)

The UK CARBINE model 
(Temperli et al., 2020) allocates 
MTV to HWP pool (long-
lived sawnwood, short-lived 
sawnwood, particleboard and 
paper), with remainder to waste.

Saw-milling losses [18]
SW: 50%
WBP: 41%  �

IPCC conversion factor [19]

Conversion factor from C to 
CO2: 3.67

3.67

A cost of USD 1 per tonne of 
carbon dioxide is equivalent to 
a cost of USD 3.67 per tonne of 
carbon. OECD
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Model component
C-ForBES parameters and 
assumptions

Comparisons with parameters/
assumptions in NIR (2018) and 
Bateman and Lovett (2000) Additional notes

Carbon Valuation [20]

Carbon values applied as per 
Irish Government shadow price 
of carbon for 2019, 2020, 2030, 
2040.
Future carbon sequestration 
and emissions are discounted 
at 5%.

NIR (2018) does not discount 
future carbon sequestration or 
emissions.
Bateman and Lovett (2000) 
discount carbon at 5% and 
include scenario analysis for 
discount rates of 2 – 12%  �

Annual Equivalised (AE) NPV 
per hectare [21] ‍

AE = r.NPV
1−

(
1+r

)−n
‍

Assume no agricultural income 
in year of planting

 �

Table B1.  Continued
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Appendix C: An Examination of Variability in 

Methodological Assumptions
In this paper, we utilise the Edwards and Christie (1981) static forest yield models, also used 
by the Forestry Commission (Britain) CARBINE model (Thompson and Matthews, 1989) 
and in the Forest Greenhouse Gases Model of the UK NEVO (Natural Environment Valuation 
Online) tool (Binner et al., 2019). The carbon valuation model developed by Bateman 
and Lovett (2000) combines data from Edwards and Christie (1981) yield models with 
carbon storage data, to estimate functional relationships for carbon storage in livewood on 
a per hectare per annum basis. The carbon accounting framework in NIR (2018) uses the 
CARBWARE single-tree model model (Black, 2016) along with the stand-based Edwards 
and Christie (1981) FORCARB model (Black et al., 2012). In more recent analyses by 
Black (such as NIR (2019) and the Teagasc Forest Carbon Tool (Teagasc, 2021), the Carbon 
Budget Model (Kurz et al., 2009) is parameterised for Irish forest carbon estimations.

Figure C1 compares C-ForBES livewood (above ground) carbon estimation (based on 
Edwards and Christie (1981) yield models and NIR (2018) accounting rules, against those 
produced in the Teagasc Forest Carbon Tool (Teagasc, 2021), using the Carbon Budget 
Model (CBM) (Kurz et al., 2009) and National Forest Inventory activity data (DAFM, 2018). 
The resulting carbon estimations for accumulated carbon dioxide over one rotation is quite 
similar in both models, albeit differing in relation to the estimation of early growth. Growth 
prior to age of first thinning is not recorded in Edwards and Christie (1981), thus differences 
arise between carbon models in relation to imputation of early growth and are sensitive to 
the data or assumptions employed.

Modelling carbon for different purposes can lead to differences in approaches. For 
example, C-ForBES looks at returns to planting on a hectare basis, (before conversion to 
volume after thinning and harvest) and has a longitudinal focus. The NIR approach on the 
other hand takes a cross-sectional perspective on biomass volumes (rather than hectares) 
and models livewood and wood products separately, using different data sources. Thus, C-
ForBES follows the wood-flows from livewood to HWP and wood energy using the Knaggs 
and O’Driscoll (2017) approach, making particular assumptions about forest rotation and 
harvest losses etc. The NIR approach meanwhile, derives livewood (and DOM) sequestration 
from National Forest Inventory (NFI) data and calculates HWP liberation on the basis of 
separate roundwood use totals (the volume of the domestic harvest in cubic metres). Due to 
heterogeneity in forest management practices and differing perspectives on optimal harvest 
rotation lengths, it can prove difficult to reconcile the resulting outputs.

The literature on harvested wood products remains relatively sensitive to assumptions 
such as the degree of losses of trees/logs to oxidation during harvesting process can have a 
considerable impact on the proportion of wood that ends up as wood products. In addition, 
a critical assumption in relation to life-cycle carbon sequestration, is the proportion of the 
harvested wood that is used for energy. When wood is combusted for energy, the carbon is 
immediately released into the atmosphere, while other wood products (e.g. sawnwood and 
wood-based panels) store the carbon for considerable periods of time. Thus assumptions in 
relation to both harvest losses and allocations to wood energy can impact on the domestic 
harvested wood inputs to the HWP pool. Figures C2 and C3 present sensitivity analyses 
of Harvested Wood Flow Carbon Liberation for different models, depending on whether a 
proportion (34%) of wood is used for energy.

Figure C2 compares the NIR (2018) approach with the C-ForBES approach, plotting the 
carbon liberation curves for the HWP categories (SW: sawnwood, WBP: wood-based panels 
and PPB: paper and paperboard. Three scenarios are presented, namely (a) NIR (2018) 
approach (b) C-ForBES harvest losses from Teagasc FIVE and (c) C-ForBES harvest losses plus 
34% allocation of harvested wood to energy, based on Wood Flow (Knaggs and O’Driscoll, 
2017).

Comparing the carbon liberation curves for different uses (SW, WBP and PPB harvested 
wood product categories) we see that the impact of harvest losses is quite small, while the 
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impact of the wood energy use is considerable. In all cases, the Paper and Paperboard HWP 
is negligible. As expected, sawnwood stores the greatest amount of carbon over time. There 
is little difference between the sawnwood curves for NIR (2018) (SW) and C-ForBES (SW HL). 
Similarly, there is little difference between the liberation curves for WBP (NIR) and WBP HL 
(C-ForBES) harvest losses. However, the reduction of the harvested wood input to HWP as a 
result of the 34% allocation to wood energy, pulls the C-ForBES carbon liberation curves (SW 
HL Energy, WBP HL Energy) well below the NIR curves in the earlier years, with the curves 
converging only towards the end of the 200 year period.

The Bateman and Lovett (2000) approach differs to the previous methods as it is 
calculated on a per hectare basis and by estimating equations for livewood sequestration, 
emissions incurred in thinning/harvesting and carbon storage/release from HWP. Comparing 
Bateman and Lovett (2000) with the NIR (2018) in Table C1 and plotting the curve 
in Figure C3, we find that the carbon profile for SW and PPB are very similar (they are 
indistinguishable), when harvest losses and energy are excluded. However, the profile is 
lower for wood-based panels in NIR (2018) than in Bateman and Lovett (2000).

The science behind forest carbon accounting and modelling is complex and values change 
over time as the science evolves. One such example is the choice of the biomass expansion 
factors (BEF), which is the ratio of total tree biomass to merchantable timber volume which 
changed quite substantially between the 2012 National Inventory Report and the 2015/2018 
reports and for thin and no-thin forests. The earlier report assumes a constant BEF of 1.64, 
whilst the latter uses a minimum of 1.68, with variation over time. Table C2 compares results 
for annual equivalised tCO2 using different BEF coefficients, showing both the greater tCO2 
for the later coefficients and the change in the ratio between thin and no thin forests.

Table C1. Harvested Wood Flow Carbon Liberation Curves: Comparison of NIR (2018) (SW, 
WBP, PPB) with Bateman & Lovett (2000) (Bateman SW, Bateman WBP, Bateman PPB)

Bateman 0 0 0 1

Harvest Loss 0 1 1 0

Energy 0 0 1 0

Sawnwood (SW) 0.255 0.242 0.160 0.253

Wood-based 
panels (WBP) 0.186 0.177 0.117 0.072

Paper and paper 
board (PPB)

0.020 0.019 0.012 0.015

Table C2. Comparing the Annual Equivalised tCO2 for Thin and No Thin by Soil Code/
Yield Class for 2012 and 2015/18 Biomass Expansion Factor (BEF) National Inventory Report 
Assumptions

Soil Code (SC)/
Yield Class (YC) 2012 BEF 2015/18 BEF Ratio 2012 BEF 2015/18 BEF Ratio

No Thin No Thin No Thin Thin Thin Thin

SC1/YC24 12.69 14.86 1.17 8.46 10.77 1.27

SC2YC/24 12.69 14.86 1.17 8.46 10.77 1.27

SC3/YC20 10.44 11.83 1.13 7.58 9.04 1.19

SC4/YC20 10.44 11.83 1.13 7.58 9.04 1.19

SC5/YC18 9.34 10.75 1.15 7.43 9.14 1.23

SC6/YC14 7.60 7.80 1.03 5.14 5.37 1.04

Average 11.56 13.37 1.16 8.04 9.98 1.24

Note BEF – Biomass expansion Factor
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Figure C1. Comparison of Above Ground tCO2 (C-ForBES and Teagasc Forest Carbon Tool) 
over one rotation

Figure C2. Impact of different approaches to determine the wood inputs to HWP on SW, WBP, 
PPB Carbon Liberation Curves for NIR (2018) WBP, PPB Carbon Liberation Curves for NIR 
(2018) approach, C-ForBES harvest losses (HL) and C-ForBES harvest losses + wood energy 
losses (HL Energy)
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Figure C3. Harvested Wood Flow Carbon Liberation Curves: Comparison of NIR (2018) (SW, 
WBP, PPB) with Bateman & Lovett (2000) (Bateman SW, Bateman WBP, Bateman PPB)
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