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Abstract Data needed in micro studies are not always available from just a single source. In such 
cases it might be possible to combine two or more independent samples. The problem studied in this 
paper is to estimate a linear function between y and x from one sample of y-observations and another 
of x-observations. This is feasible if there are common variables z which can be used to predict x. A 
two-stage least squares estimator is propounded, which, for the model considered, is also an ML 
estimator. Simulation experiments show that it has a good relative efficiency and virtually no small 
sample bias.
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1. Introduction
Microdata, i.e. data on individuals, households or firms, have long been used in social science research, 
and their importance is increasing. Since human behavior sometimes calls for very complex explana-
tions and since social experimentation is rarely a feasible approach, social scientists frequently work 
with complex models involving many variables in efforts to control for confounding effects. To esti-
mate these models we do not only need large samples of microdata, but ideally we would also need 
to observe many aspects of behavior for each individual, household or firm.

Surveys are the primary source of microdata, but survey research is very expensive, and few 
researchers can afford new surveys. Contributing to the high costs are the increasing difficulties in 
many countries to gain the cooperation of the respondents. In particular, when many questions are 
asked and there is a heavy respondent burden, the respondents tend to economize their time. They 
have also become aware of the privacy issues. The public debate about the use of computers and the 
risks for invasion of privacy, which in some countries have resulted in data legislation, have made it 
even more difficult to make the respondents cooperate.

As pointed out in Dalenius (1982), matrix sampling is a class of sampling schemes which may 
cope with these problems. Since with such a design only a sample of all variables is observed for each 
selected unit, the respondent burden and the risk for invasion of privacy are reduced. It is, however, 
obvious that multivariate analysis from such a sample might meet with difficulties.

High costs and nonresponse problems also make us look for alternative data sources, i.e. already 
existing data files and administrative records. Frequently, however, we are unable to find all the vari-
ables needed in those files and records. If feasible, matching of two or more data sets might give us 
what we need. Matching is also much less expensive than a new survey. However, in most cases exact 
matching is not possible, either because there is no overlap, i.e. no individual, household or firm can 
be found in more than one data set, or there is no unique identification term, or the use of this term is 
prohibited in order to protect personal privacy. In Sweden, for instance, matching data on individuals 
falls under the Data Act and requires a permit from the National Data Inspection Board.1

If neither a new complete data collection nor an exact matching of existing files are feasible solu-
tions, to what extent is it then possible to use non-overlapping datasets? The answer to this question 
will in the general case depend on the intended analysis and in what sense the data are incomplete. 
This paper treats the problem of estimating a linear relation from two independent data sets, none 

1.	 For a discussion of the need for microdata in economics, see Klevmarken (1983a).
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of which includes all the relevant variables. Suppose, for instance, that we want to estimate a model 
according to which y depends on x. y and x are, however, not observed for the same units, but y- and 
x-observations are found in two independent samples.

This is a hopeless situation unless something more is known about y and x, and there is some 
common information in both samples. Suppose a third variable, z, which could be used as a predictor 
of x, is observed in both samples. It is then possible to estimate the predictive relationship between x 
and z from one sample and use the estimates in the other sample to predict x. The relation between 
y and x is finally estimated on the basis of these predictions and observed y-values. This procedure 
requires model assumptions which make it possible to pool two (or more) samples. The properties of 
the estimates, of course, depend on the assumptions made, and the whole approach is useful only if 
these are not too constraining. As we shall see, it is possible to work within quite a general class of 
linear models.

When invasion of privacy is a real issue or nonresponse a severe problem, a complete data collec-
tion might not be permissible or feasible. However, if good predictors can be found, each individual, 
household or firm would only need to contribute partial information, which would be less sensitive, 
and an analysis would still be feasible with the methods suggested in this paper.

Missing variables is not a new problem. In most textbooks of regression analysis and economet-
rics it is discussed as a specification error. In the applied literature various ad hoc approaches can 
be found. For instance, in the economic literature on compensating wage differentials, aggregate 
data on occupational characteristics such as accident rates and aggregate work environment data are 
matched with individuals on the basis of their occupation and industry. One example is given in Brown 
(1980). As we shall find, this is a special application of the prediction approach discussed below.

An alternative approach is statistical matching (U.S. Department of Commerce, 1980). The theo-
retical basis for statistical matching is still undeveloped, and it is also a very expensive approach (Barr 
et al. (1982), Paass (1982), Rodgers and DeVol, 1982). The approach discussed in this paper has the 
advantages of being based on conventional statistical theory and of requiring no expensive matching 
of microdata.

In Section 2 of the paper we review some results for a model with stochastically dependent equa-
tions. Since interdependent systems have mostly been used in connection with aggregate time-series, 
while microdata applications are less frequent, it might erroneously be believed that the approach 
suggested in this paper is only of minor interest in microstudies. However, the importance of this type 
of model is likely to increase in microstudies as well, when more longitudinal data become available 
and when ample data make it feasible to analyze joint decisions of microunits, e.g. joint household 
decisions about work, leisure, consumption and savings. Also, and more important, the estimation 
approach suggested is not only applicable to interdependent systems but to a much wider class of 
models. In Section 3 this approach will be used to estimate a linear regression model. One reason to 
discuss its application to an interdependent system first is that the "predictors" of the unobserved 
variables are in a natural way given by theory, which is not obviously the case with a regression model.

Section 4 presents some findings from a simulation study of the small sample properties of the 
estimator, and Section 5 gives some concluding remarks.

2. Estimation of an interdependent linear model
The estimation of one equation in an interdependent system of equations from two independent 
samples with missing variables was discussed in Klevmarken (1982). This equation was specified as

	﻿‍ y = Y1β + X1γ + u;‍� (1)

and it was part of the interdependent system,

	﻿‍ YB′ + XΓ′ = U;‍� (2a)

	﻿‍ E(U) = O; E(U′ U) = nΣ,‍� (2b,c)

where Yn·G is a matrix of n observations on G endogenous variables,

‍yn.1‍ is a vector of the n observations on the endogenous variable explained by (1),

‍Y1,n.g‍ is a matrix of the n observations on the g explanatory endogenous variables in (1),

‍Xn.K ‍ is a matrix which includes all K exogenous variables, ,
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‍X1,n.k‍is a submatrix of X which includes the k exogenous variables in (1),

‍Un.G‍ is a matrix of stochastic disturbances,

‍un.1‍ is the vector of stochastic disturbances of (1), one of the columns of U,

‍BG.G‍ and ΓG.K are parameter matrices,

‍βg.1‍ and ‍γk.1‍ are vectors of the nonzero parameters in (1),

‍ΣG.G‍ is an unknown positive definite moment matrix.
 

It is assumed that (1) is identified. The reduced form of the complete system is,

	﻿‍ Y = Xπ′ + V;‍� (3a)

	﻿‍ where π = −B−1Γ;‍� (3b)

	﻿‍ and V = U(B′)−1
‍� (3c)

The part of the reduced form corresponding to the endogenous variables to the right in equation 
(1) is,

	﻿‍ Y1 = Xπ1
′ + V1;‍� (4)

where ﻿‍π‍1 and V1 are the corresponding g· K and n·g submatrices of ﻿‍π‍ and V, respectively.
For later use it is also convenient to introduce an n·(K-k) matrix X2 defined by,

	﻿‍ X =
{

X1|X2
}

.‍� (5)

Suppose now that data are not available in the form of one complete sample, but that there are 
two samples, A and B, none of which contains all the variables. Assume that the data come in the 
following form,

	﻿‍ Sample A: yA
nA.1 ; XA

nA.K‍�

	﻿‍ Sample B: YB
1,(nB.K); XB

nB.K‍�

‍nA‍ and ‍nB‍ are the two sample sizes. They are not necessarily equal. Since (2c) implies that there is 
no residual correlation between observational units, the two samples can be treated as independent 
random samples.

An example to which this problem specification might be applicable is the joint estimation of 
demand functions for consumer goods and household time-use functions, both derived from a house-
hold production type of model. Consumer expenditure data could be obtained from a household 
expenditure study, while time-use data would have to be taken from a separate time-use survey. There 
are at present practically no surveys which include both kinds of data. Both kinds of surveys would, 
however, give income data and other characteristics of the household.

Eq. (1) cannot be estimated from sample A alone, since the Y1-variables are missing, but, if g‍≤‍ K-k, 
the two samples can be combined in the following two-stage procedure:

I. Estimate the reduced form equations (4) from sample B by OLS, which gives the estimates ‍
⌢

πB
1 ‍ . 

Use these estimates to predict Y1 in sample A, i.e.

	﻿‍ ŶA
1 = XA(π̂B

1 )′;‍� (6)

II. Estimate by OLS from sample A

	﻿‍ yA = ŶA
1β + XA

1γ + (uA + ṼA
1β);‍� (7)

where ‍̃V
A
1 = YA

1 − ŶA
1 ‍ .

Note that ‍̃V
A
1 ‍ is not the vector of least squares prediction errors from sample A and thus not neces-

sarily orthogonal to XA.
With the following notation
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	﻿‍ ∂′ =
{
β′|γ′

}
1.(g+k)‍�

	﻿‍
Z =

{
ŶA

1 |XA
1

}
nA.(g+k)

;
‍�

(7) becomes

	﻿‍ yA = Zδ + (uA + ṼA
1β);‍� (8)

and the estimator of ﻿‍δ‍ is,

	﻿‍ δ̂ = (Z′Z)−1Z′yA;‍� (9)

If the two samples would coincide, ﻿‍δ‍ would be the usual TSLS estimator. In Klevmarken (1982) it 
was shown that the estimator ﻿‍δ‍ is biased but consistent. The following asymptotic properties can also 
be proved.2

If n8=cnA , where c>0 is an arbitrary finite constant, and if (1/nA) (XA'XA) and (1/nB) (XB'XB) both tend 
to finite non-singular limits when nA and nB tend to infinity, and if the rows of the error matrix U are 

stochastically independent, then ‍

√
nA (δ̂ − δ)‍ asymptotically follows a normal distribution with zero 

mean vector and co-variance matrix.

	﻿‍ (σ11 + 2σ′
1B∗β + 2β′B∗′ΣB∗β)Q−1

‍�

‍σ1‍is the first column of the matrix ﻿‍Σ‍. The first element of this vector is ‍σ11‍ and the other elements 
are the covariances between the error term in the first equation and those in the other equations. B* 
is a matrix of g columns from (B')-1 such that

	﻿‍ V1 = UB∗.‍�

Q, a finite non-singular matrix, is the limit to which (1/nA)(Z'Z) tends in probability when nA tends 
to infinity.

The asymptotic moment matrix of the ordinary TSLS estimator based on a complete A- sample is 

‍σ11Q−1
‍. As shown in Klevmarken (1982), it is possible to find cases for which the asymptotic variance 

of ﻿‍δ‍ is smaller than the asymptotic variance of the ordinary TSLS estimator.
As a preliminary to the next section, suppose that sample A does not only lack the Y1-observations 

but also all observations on one or more of the X1-variables. Could we then use the information in 
sample B to predict X1 in A? Since X1 by definition is exogenous, there is no theoretical justification for 
predicting X1 within the present model. Additional assumptions about X1 are needed. This problem 
and the nature of the new assumptions are, however, not particular to a model of interdependent 
equations, and could more conveniently be discussed within the framework of an ordinary regression 
model.

3. Estimation of a linear regression model
As above, we assume that there are two independently drawn samples, A and B. These now include 
the following variables and observations,

	﻿‍ Sample A:yA
(nA.1) XA

2(nA.k2)‍�

	﻿‍ Sample B: XB
1(nB.k1) XB

2(nB.k2).‍�

The two samples will be used to estimate the model,

	﻿‍ y = X1γ + u; u ∼ N(0,σ2
uI);‍� (3.1a,b)

2.	 This corrects results given in Klevmarken (1982). A proof is parallel to that given in Klevmarken (1983b).
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where ‍γ‍ is an unknown parameter vector, and ‍X1‍ is assumed to be a matrix of k1 stochastic vari-
ables, which depends linearly on X2.

	﻿‍ X1 = X2R+ϵ;‍� (3.2a)

	﻿‍ ϵ =
{
ϵ1, ...., ϵk1

}
‍� (3.2b)

	﻿‍ ϵj ∼ N(0,σ2
j I);‍� (3.2c)

	﻿‍ E(ϵiϵj) = 0 ∀ i ̸= j;‍� (3.2d)

R is a parameter matrix. X2 is treated as a matrix of non-stochastic variables. It is also assumed that 
there are at least as many predictors as predictands, i.e. ‍k2 ≥ k1‍. For the two samples we thus obtain 
the following three relations,

	﻿‍ yA = XA
1γ + uA

‍� (3.3a)

	﻿‍ XA
1 = XA

2 R + ϵA
‍� (3.3b)

	﻿‍ XB
1 = XB

2 R + ϵB
‍� (3.3c)

Since ‍X
A
1 ‍ is not observed, (3.3 b) is inserted into (3.3 a) to give the following reduced system of 

observed variables

	﻿‍ yA = XA
2 Rγ + ϵAγ + uA

‍� (3.4a)

 

	﻿‍ XB
1 = XB

2 R + ϵB;‍� (3.4b)

This model shows great similarities with an errors-in-variables model analysed in Goldberger 
(1972). Goldberger’s starting point was a regression model containing a single explanatory variable 
observed with a random error. This model also assumed that the true unobserved variable was a 
non-stochastic linear function of a number of independent variables. Zellner (1970) has previously 
considered this model and developed a generalized least-squares estimator and also presented a 
Bayesian analysis of the model. Goldberger developed the corresponding maximum likelihood theory 
and extended it to a model in which the true unobserved variable is a stochastic function of the inde-
pendent variables rather than an exact function. The observable equivalent of Goldberger’s model has 
the same form as eq:s (3.4 a, b). The only difference is that the two equations refer to two different 
samples, while Goldberger’s observations were assumed to come from a single sample.

It is convenient to rewrite eq:s (3.4 a, b) in the following way,

	﻿‍ yA = XA
2π + ν,‍� (3.5a)

	﻿‍ xB
1j = XB

2 rj + ϵB
j ; j = 1, ...., k1,‍� (3.5b)

where ‍X
B
1j‍ is the j:th column of ‍X

B
1 ‍ , rj is the j:th column of R, and

	﻿‍ π = Rγ;‍� (3.5c)

	﻿‍ v = ϵγ + u;‍� (3.5d)

It is assumed that u and ‍ϵj‍ are uncorrelated for all j. It follows that,

	﻿‍ E(VV′) = (γ′Σγ + σ2
u)I;‍� (3.6a)

where
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	﻿‍
Σ = diag

{
σ2

1, ...,σ2
k1

}
;
‍� (3.6b)

Since the two samples are independent, the joint distribution of the observable variables is,

	﻿‍ F(yA, XB
1 ) = Fy(yA)FX1(XB

1 );‍� (3.7)

The likelihood function becomes (disregarding irrelevant constants),

	﻿‍

L(γ, R, σ2
u , Σ) = −nAlog(γ′Σγ + σ2

u) − (γ′Σγ + σ2
u)−1(y − XA

2 Ry)′(y − XA
2 Ry) − nBΣjlog(σ2

j ) −

Σj(σ2
j )−1(XB

1j − XB
2 rj)′(XB

1j − XB
2 rj); ‍

� (3.8)

Differentiating with respect to the unknown parameters and putting the derivatives equal to zero 
gives,

	﻿‍
δL
∂σ2

u
= −nA(γ′Σγ + σ2

u)−1 + (γ′Σγ + σ2
u)−2(y − XA

2 Ry)′(y − XA
2 Ry) = 0;

‍� (3.9)

If we define ‍ξ = (γ
′
Σγ + σ2

u)‍ it thus follows that,

	﻿‍ ξ̂ = n−1
A (y − XA

2 Ry)′(y − XA
2 Ry);‍� (3.10)

	﻿‍

δL
∂σ2

j
= −nA(γ′Σγ + σ2

u)−1γ2
j + γ2

j (γ′Σγ + σ2
u)−2(y − XA

2 Rγ)′(y − XA
2 Rγ) − nB(σ2

j )−1 +

(σ2
j )−2(xB

1j − XB
2 rj)′(xB

1j − XB
2 rj) = 0; ‍�

(3.11)

From eq:s (3.9) and (3.11) it follows that,

	﻿‍
⌢
σ

2
j = n−1

B (XB
1j − XB

2 rj)′(XB
1j − XB

2 rj);‍� (3.12)

The concentrated likelihood function then becomes,

	﻿‍
L∗ = −nAlog

{
(yA − XA

2 Rγ)′(yA − XA
2 Rγ)

}
− nBΣjlog

{
(xB

1j − XB
2 rj)′(xB

1j − XB
2 rj)

}
;
‍� (3.13)

	﻿‍
∂L∗
∂γ = −nA

{
(yA − XA

2 Rγ)′(yA − XA
2 Rγ)

}−1
R′XA

2
′(yA − XA

2 Rγ) = 0
‍�

(3.14)

	﻿‍ ∵ γ̂ = (R′XA
2
′XA

2 R)−1R′XA
2
′yA;‍� (3.15)

If eq. (3.15) is premultiplied by ‍R
′
XA

2
′XA

2 R‍ one easily sees that,

	﻿‍ π̂ = Rγ̂ = (XA
2
′XA

2 )−1XA
2
′yA;‍� (3.16)

Eq. (3.16) inserted into eq. (3.13) gives a new concentrated likelihood function,

	﻿‍
L∗∗ = −nBΣjlog

{
(XB

1j − XB
2 rj)′(XB

1j − XB
2 rj)

}
;
‍� (3.17)

If the derivative of this function is put equal to zero, we obtain the ordinary least-squares solution,

	﻿‍ r̂j = (XB
2
′XB

2 )−1XB
2
′x1j;‍� (3.18a)

or in matrix form,

	﻿‍ R̂ = (XB
2
′XB

2 )−1XB
2
′XB

1 ;‍� (3.18b)

From (3.15) and (3.18b) we thus find that the maximum-likelihood solution is equivalent to the 
TSLS procedure analogous to the estimation method suggested for the interdependent model in the 
previous section.
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This result no longer holds if the X1-variables are correlated, i.e. if ﻿‍Σ‍ is not diagonal, or if the 
errors are heteroscedastic. With such changes in the model specification we would have to find the 
maximum likelihood estimates by numerical maximization of the likelihood function.

If we allow both for contemporaneously correlated errors and for heteroscedasticity, the model can 
be written in the following way,

	﻿‍ yA = XA
2 Rγ + ϵA

γ + uA;‍� (3.19)

	﻿‍ XB = (I ⊗ XB
2 )r + ϵB;‍� (3.20)

                        where ‍X
B′ =

{
x11

′, x12
′, ..., x1k1

′}
‍,

	﻿‍ r′ =
{

r1
′, r2

′, ..., rkl
′} ,‍�

	﻿‍
ϵB′ =

{
ϵ
′

1, ϵ
′

2, ..., ϵ
′

kl

}
,
‍�

	﻿‍ ∈j
′ =

{
∈j1,∈j2, ...,∈jnB

}
‍�

Now let

	﻿‍

E(∈is∈jt) =



σij(t) if s = t

0 if s ̸= t




‍�
(3.21)

We define the contemporaneous moment matrices for observation t,

	﻿‍ E(∈1t,∈2t, ... ∈k1t)(∈1t,∈2t, ... ∈k1t)′ = Σ(t) =
{
σij(t)

}
k1.k1

;‍� (3.22)

and the individual specific moment matrices,

	﻿‍ E(∈i∈′
j) = Ωij = diag

{
σij(1),σij(2)...σij(nB)

}
;‍� (3.23)

These two types of matrices are thus functions of the same parameters. We also allow uA to be 
heteroscedastic, i.e.

	﻿‍
E(uu′) = Ωu = diag

{
σ2

u(1)σ
2
u(2)...σ

2
u(nA)

}
;
‍� (3.24)

With these assumptions it follows that,

	﻿‍

E(ϵγ + u)(ϵγ + u)′ = E(ϵγγ′ϵ + uu′) =




γ′
∑

(1) γ 0 0

0 γ′
∑

(2) γ 0
...

. . .
...

0 0 . . . γ′
∑

(nA) γ




+ Ωu;

‍�

(3.25)

and,

	﻿‍

E(∈B ∈B′) =




Ω11 Ω12 . . . Ω1K1

Ω21 Ω22 Ω2K1

...
. . .

...

ΩK11 ΩK12 . . . ΩK1K1




;

‍� (3.26)

The matrix (3.25) is denoted V and the matrix (3.26) ﻿‍Ω.‍ Disregarding irrelevant constants the likeli-
hood function then becomes,
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	﻿‍

L = −log det(V) + tr
{

V−1(yA − XA
2 Rγ)(yA − XA

2 Rγ)′
}
− log det(Ω) +

tr
{
Ω−1(x − (I ⊗ XB

2 )r)(x − (I ⊗ XB
2 )r)′

}
;

‍�
(3.27)

The model will not be identified unless additional assumptions are made about the nature of the 
heteroscedasticity.

The TSLS estimate of ‍γ‍ is consistent. This result follows, because it is a function of consistent esti-
mates of the parameters R of the auxiliary relations and it is in itself consistent conditional on R. This 
is true also for non-normal errors.

‍γ‍, however, is not unbiased. This is easily seen from the simple model with ‍k1 = k2 = 1‍ and only one 

‍γ‍-parameter:

	﻿‍
γ̂ =

(
ΣxB

1 xB
2

Σ(xB
2 )2

)−1 (
ΣxA

2 y
Σ(xA

2 )2

)
‍�

	﻿‍
E(γ̂) = EX1 (E(γ̂|x1)) = EX1

{(
ΣxB

1 xB
2

Σ(xB
2 )2

)−1
γr
}

̸= r−1γr;
‍�

The critical assumptions of the present model and of the whole approach are those about the 
auxiliary relations (3.3b) and (3.3c). It might at first seem very constraining to assume that there exist 
linear relations which explain the unobserved variables and that these relations are the same for both 
samples. However, we do not necessarily have to give them a causal interpretation but could rather 
look upon them as predictive relations. In practical applications of this approach, we will the face the 
problem of finding good predictors. Linearity is not a binding restriction. At the minor cost of discon-
tinuities, non-linear relations can be transformed into linear relations with dummy variables.

If the samples are sufficiently large, we could use dummy variables only and still obtain a good 
precision of the estimates. That would be equivalent to grouping the two samples by the same 
groups, merging them at the group level and then estimating the relation between y and X1 from 
group means.

The auxiliary relations must be formulated in such a way that no parameters are needed to predict 
X1 in sample A, which cannot be estimated from sample B. This means that the two samples cannot 
differ to much with respect to observational units, variable definitions etc. However, the two samples 
do not have to be of the same size, and the number of observations with a particular configuration of 
X2-values can differ between the samples. Other differences might also be acceptable. For instance, if 
the model explains household behavior and sample A includes household data, it might be possible 
to use data on individual persons in sample B, viz. if household behavior (data) can be predicted from 
individual behavior (data).

4. A simulation experiment
A simulation experiment was made to illustrate the estimation procedure numerically and to get an 
idea about its small sample properties. The experiment was based on a demand equation, which 
relates expenditures on food, beverages and other every day commodities to household dispos-
able income, age of household head and household size. The parameters of this function were esti-
mated from two samples of household data. The first sample included all variables except disposable 
income. There was, however, in this sample information about tax assessed income for each house-
hold member. The second sample included both household disposable income and assessed income, 
as well as additional variables which could be used to predict disposable income, the most important 
one being the ownership of owner-occupied houses.3 The model was specified as follows,

	﻿‍ LEXP = 3.594 + .4LDISP + .04AGE − .00043AGE2 + .644HS − .0723HS2 + u;‍�

	﻿‍ u ∼ N(0,
√

.45);‍�

3.	 Deduction of interest payments reduces the assessed income for owners of owner-occupied houses, as com-
pared with non-owners
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	﻿‍ LDISP = 2.665 + .7445LTAXINC + .5626DH − .00000176DHTAXINC+ ∈;‍�

	﻿‍ ∈∼ N(0,
√

.053);‍�

	﻿‍ E(u ∈) = 0;‍�

where

LEXP = The logarithm of expenditures on food, beverages and other everyday commodities,
LDISP= The logarithm of disposable income,
AGE= The age of the household head,
HS = Household size,
LTAXINC = The logarithm of the total of the assessed incomes of all household members,
DH = A dummy variable for owners of owner-occupied houses, and DHTAXINC = Assessed income 

for owners of owner-occupied houses; zero for non-owners.
With minor adjustments the parameter values were obtained as the least squares estimates of the 

model from a small sample of 144 households, which included survey and register information of all 
variables. The observations on the exogenous variables of this sample were then used in the simula-
tions. First, the sample was randomly divided into two samples, A and B. Then for each observation, 
LDISP was simulated either four times or ten times. In sample A the simulated LDISP values were used 
to simulate LEXP values. In this way we obtained a simulated sample four or ten times larger than the 
original sample but with the same covariance structure of the exogenous variables. Finally, the param-
eters of the demand function were estimated by the TSLS procedure using the two subsamples. The 
whole simulation and estimation procedure was then replicated.

There are altogether seven simulations. In all but the last two of these, the two subsamples were of 
the same size, 288 in simulation 1 and 2 and 788 in 3 and 5. In simulations 7 and 8 sample A included 
360 observations, while sample B was three times as large.

The results are shown in Table 1. They indicate that, when the true predictive relation is used, 
there is virtually no bias. The bias estimates given in the table are so small that they are dominated 
by the random fluctuations of the simulation experiment. In simulation 5 the predictive relation used 
in the estimation was misspecified. The house-owner variable and the interaction variable were both 
deleted, and the logarithm of assessed income was thus the only predictor.4 The result is a small bias. 
The income elasticity is underestimated by 5 per cent, and there is also an 8-9 per cent bias in the 
estimates of the household size parameters.

Since the LDISP variable is predicted with an error, it might be expected that the efficiency of the 
TSLS estimator would be less than for the LS estimator based on a complete sample. In Table 1 we 
can compare the relative root mean-square errors for these two cases.5 In both cases this measure 
includes the variability caused by the drawing of a new LDISP vector for each sample. We find that the 
estimated relative efficiency, defined as the ratio of the two root mean-square errors, is approximately 
80 per cent for the income elasticity, i.e. for parameter ‍γ2‍. It is between 80 and 90 per cent for the 
intercept and above 90 per cent for the other parameters. The number of replications is not large 
enough to justify any conclusions about the dependence of the efficiency on the sample size. When 
the predictor relation is incorrectly specified there is an additional, but in this particular case, modest 
loss in efficiency. This is at least partly caused by the bias component.

Finally, Table  1 also shows that the variance formula for the ordinary least-squares estimates 
applied to the second step of the TSLS procedure, i.e. the diagonal elements of ‍S2(X̂1

′X̂1)−1,‍ gives 
good estimates of the true variance of ‍̂γ‍. S2 is the residual variance in the second estimation step. 
The last row of each panel of Table 1 shows the square-root of the mean of the replications of each 
diagonal element relative to the true parameter value. They differ very little from their corresponding 
relative root mean-square errors.

4.	 The full model was, of course, used to simulate data.
5.	 The relative root mean-square error for the estimator ‍̂γi‍ is defined as‍

√
MSEi/γi.‍
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Table 1. Results from seven simulation experiments

γ1 γ2 γ3 γ4 γ5 γ6

Parameter values 3.594 0.400 0.040 -0.00043 0.644 -0.0723

Simulation 1: TSLS

nA 288

nB 288

Replications 800

Relative bias(%) 0.42 -0.82 2.42 1.72 0.79 1.36

Relative‍
√

MSE (%)‍ 32.82 29.55 57.50 53.49 27.00 36.66

Relative sq. root mean

variance estimate (%) 33.46 30.30 56.00 53.49 27.83 38.59

Simulation 2: LS, X2=LDISP known

nA 288

Replications 400

Relative‍
√

MSE (%)‍ 29.54 24.60 56.25 53.49 24.78 34.16

Relative sq. root mean

variance estimate (%) 28.54 24.75 54.75 51.16 26.89 37.48

Simulation 3: TSLS

nA 720

nB 720

Replications 600

Relative bias (%) -1.00 0.61 1.83 0.28 -0.14 -1.14

Relative‍
√

MSE (%)‍ 21.82 19.16 35.30 33.23 17.23 24.17

Relative sq. root mean

variance estimate (%) 21.22 19.21 35.54 33.53 17.64 24.45

Simulation 4: LS, X2=LDISP known

nA 720

Replications 1000

Relative‍
√

MSE (%)‍ 17.57 15.05 34.83 32.94 16.62 23.49

Relative sq. root mean

variance estimate (%) 17.99 15.61 34.57 32.66 16.99 23.69

Simulation 5: TSLS, wrong predictors

nA 720

nB 720

Replications 600

Relative bias (%) 1.62 -4.86 2.18 -0.22 9.13 -7.70

Relative‍
√

MSE (%)‍ 24.16 22.57 37.55 35.52 19.66 25.84

Relative sq. root mean

variance estimate (%) 24.02 21.56 36.22 34.28 17.38 24.51

Simulation 6: TSLS

Continued
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5. Concluding remarks
It is not unusual in nonexperimental studies that variables are missing or replaced by proxies. Even 
when a new survey is to be made it might not be feasible to collect all items of information from every 
respondent, either because of the risk for invasion of privacy or because the respondent burden might 
become so high that the response rate would drop below an acceptable level. One approach to solve 
this problem has been suggested in this paper. When the statistical problem is to estimate a linear 
relation between y and x or an equation in an interdependent linear system, one sample including all 
variables is not necessarily needed, but two or more samples, each with missing variables, can be used 
instead. A sampling scheme like matrix sampling could thus be used in combination with the estima-
tion method suggested. A condition is that it is possible to predict the missing variables.

If "true" predictors are used, the two-stage least-squares estimator suggested has good prop-
erties. It is consistent asymptotically normal. For a proof see Klevmarken (1983b). What has been 
shown here is that the estimator is a maximum-likelihood estimator, if the moment matrices of the 
regression model and the predictive relations are scalar. When they are not scalar matrices, the 
maximum-likelihood estimates can be obtained by numerical optimization of the likelihood function.

A sampling experiment has indicated that the two-stage least-squares estimator also has favorable 
small sample properties. We found virtually no bias, and the decrease in efficiency, relative to the case 
with one complete sample, was small.

In practice it might be difficult to know the "true" predictors. In the case of the interdependent 
model, the predictors are given by the model. If all of them cannot be used, e.g. because of a shortage 
of data, the estimates will no longer be consistent (see Klevmarken (1982)). For the regression model 
the same conclusion does not necessarily follow. In this case the predictive relations do not necessarily 
have the same status of theory. To some extent we can choose these relations at our convenience. If 
x1 is a stochastic variable, it is always possible to define distributions conditional on some x2. If these 
distributions do not have the same mean, ‍E

(
x1|x2

)
‍ could, in principle, be used as a predictive relation. 

The efficiency of the resulting estimate would, however, depend on how well this relation predicts 
x1. If the residual variance is high, the estimates are likely to have a high variance as well. In practical 
applications it would thus be desirable to use at least part of sample B to find good predictors. This 
search process is stochastic, and the variability introduced by the search should, in principle, be taken 
into account when the properties of the estimator are evaluated.

With ‍X1‍ unobserved and with no supplementary information, the regression model is unidentified. 
The identification is achieved by the predictive relation, which adds the necessary a priori information 

γ1 γ2 γ3 γ4 γ5 γ6

nA 360

nB 1080

Replications 400

Relative bias (%) -1.37 2.24 -5.30 5.47 -1.65 3.02

Relative‍
√

MSE (%)‍ 31.11 31.31 59.01 56.01 28.78 42.99

Relative sq. root mean

variance estimate (%) 29.74 29.85 60.06 57.20 27.48 40.72

Simulation 7: LS, X2=LDISP known

nA 360

Replications 400

Relative bias (%)

Relative‍
√

MSE (%)‍ 25.37 23.90 54.13 51.74 27.62 41.92

Relative sq. root mean

variance estimate (%) 24.91 23.56 56.28 53.79 26.59 39.77

Table 1.  Continued
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and bridges the two samples. A priori information might also come in other forms. For instance, if 
the unobserved X1 variables do not only explain one y-variable but two or more variables, we could 
look upon the y-variables as indicators of X1 and arrive at a model which is similar to a factor analysis 
model. All these indicators do not necessarily have to come from the same sample. Although the 
details have to be worked out, it should be possible to combine two or more independent samples 
in this case as well.

There are common features of the approach suggested in this paper and the general principles of 
statistical matching. In statistical matching similar observations in the two samples are matched. Simi-
larity is defined either by a grouping principle or by a distance measure defined on a set of variables. 
These variables basically serve the same purpose as the predictor variables in the TSLS approach. 
There are, however, also important differences. In most applications of statistical matching there is 
the implicit assumption of independence between y and X1 conditional on X2. The models discussed 
in this paper do not involve this assumption. The conditional covariance between y and X1 in the 
regression model is a function of the structural parameters ‍γ‍ and the moment matrix of the errors in 
the predictor relations.

Finally, a remark on functional form. Linear models have been assumed throughout this paper. 
Extending the same approach to non-linear models would be quite conceivable, and there is no 
reason why this would not be feasible. The properties of the estimates would, however, be more diffi-
cult to derive, and this remains to be done.
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