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Abstract In practical applications of Micro- Simulation Models (MSMs), very little is usually 
known about the properties of the simulated values. This paper argues that we need to apply 
the same rigorous standards for inference in micro- simulation work as in scientific work generally. 
If not, then MSMs will loose in credibility. Differences between inference in static and dynamic 
models are noted and then the paper focuses on the estimation of behavioral parameters. There 
are four themes: calibration viewed as estimation subject to external constraints, piece wise versus 
system- wide estimation, simulation- based estimation and validation. © 2002 IMACS. Published by 
Elsevier Science
DOI: https:// doi. org/ 10. 34196/ ijm. 00255

1. Introduction
Micro- simulation has been used, for instance, in 'economics', 'economic geography' and ’sociology' 
to assess the impact of changes in economic and social policy on individuals, households and firms. 
In a rather detailed way these models usually include legislative rules as they apply at the micro level 
such as those for taxes and benefits, and sometimes also behavioral models to capture individual 
adjustments to legislative changes. They are applied to a sample of individuals (households, firms), 
which provide the starting values for a simulation. As the simulation proceeds the status of each indi-
vidual is updated, for instance, whether alive, in work, eligible for benefits, etc., and what incomes are 
received and what taxes paid. The object of simulation could, for instance, be to estimate the change 
in government revenues following a tax change. The reason not to use a more aggregate approach is 
then that the highly nonlinear tax system interacts with the income distribution and with the composi-
tion of the population of tax payers in terms of their eligibility for deductions, and the applicability of 
thresholds and tax rates, such that a micro analysis is needed. Another object of simulation could be 
to analyze the distribution of incomes after tax. For instance, does a reduction in the tax rates at low 
incomes reduce the population share in poverty taking any consequential reductions in benefits and 
changes in work incentives into account?

One usually distinguishes between static models, in which the size and composition of the simu-
lated population is not changed, and dynamic models, which include mechanisms that simulate 
changes in the population of individuals.

Inference in micro- simulation models (MSMs) is in principle no different from statistical inference 
generally, but in current practice the inference aspects have been neglected. Unknown parameters 
have not always been estimated using estimation methods with known properties, but values have 
been assigned by some calibration method. One has been satisfied if the model runs and approxi-
mately tracks observed data. The large size of a typical MSM and the difficulties to get coherent data 
has made many researchers and practitioners accept ad hoc methods.
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There are thus practical problems with inference in MSM related to the large number of relations 
and conditions, the frequent use of nonstandard functional forms often including discontinuities, and 
the fact that data typically are obtained from many different sources.

Micro- simulation aims at statements about the distribution of some endogenous variables (for 
instance, the distribution of incomes) defined on a population (for instance, the population of Swedes 
in a particular year), given certain policy assumptions (for instance, assumptions about tax rates) and 
initial conditions. These initial conditions are usually given by a sample of individuals on which the 
MSM operates. In the simulation sample values are changed or updated, and the new sample values 
are used to estimate properties of the distribution of interest (for instance, a total, a mean or a Gini 
coefficient).

A proper inference usually involves several random experiments. One is drawing the sample of 
initial conditions, another is the random experiment or process assumed to generate population data, 
and third is the generation of random numbers in the simulation experiment. The choice of methods 
is also determined by the mode of inference, whether there is an inference to a finite population or a 
"super population".

Because the random experiments involved and the mode of inference in static micro- simulation, 
in general, is different from that of dynamic micro- simulation it is useful first to discuss inference in 
static models and then turn to dynamic models. Then follows a section on the estimation of behavioral 
models. Although primarily based on the "super population" thinking of dynamic models much of 
what is to be said about incorporating external information and simulation estimation also applies to 
static models. The paper ends with a few concluding remarks.

2. Inference in static MSM
The simplest case of a static model is one without behavioral response relations. It only includes a set 
of deterministic rules, for instance, tax and benefit rules translated into computer code. The FASIT 
model of Statistics Sweden and the LAW model of Statistics Denmark are two examples. There is 
also currently work on a European model EUROMOD for all EU countries. Given a sample of pretax 
incomes it computes taxes, benefits and disposable incomes for each individual in the sample. In this 
case, there is no model- based inference but only an inference from the sample of initial conditions 
(pretax incomes) to the population from which this sample was drawn. In this case an inference to the 
finite population is meaningful and usually also desired.

If the sample of initial conditions is a probability sample this would seem to be a standard appli-
cation of sampling theory. But usually, the sample was drawn from a population dated a few years 
ago while an inference is desired to a population, which is present today, and in general, these two 
populations differ.

This problem is usually handled by reweighting. The sample weights are adjusted such that a 
standard inference will reproduce the observed distribution of certain variables in the present popu-
lation. One might, for instance, know that the age distribution and the distribution of schooling have 
changed and then seek to adjust the sampling weights accordingly. A technical approach to achieve 
this is calibration, see (Lindström, 1997; Lundström, 1997; Merz, 1993). The idea is to obtain new 
weights, which are so close to the old ones as possible, but make the simulated values aggregate to 
know totals. Closeness is defined by some measure of distance. The choice of distance measure is 
rather arbitrary but is has been shown that certain distance functions give estimators which are well- 
known in the sampling literature (Deville and Särndal, 1992; Lundström, 1997). Although calibration 
estimators aggregate to known totals this is no guarantee one obtains an inference to the desired 
population. The problem might remain if the knowledge of totals does not include the key variables 
of interest, or if not only the center of location but also the dispersion of key variables have changed. 
Without a thorough analysis of the causes to population changes any reweighting becomes ad hoc. 
Formulating a model, which captures causal relations, on the other hand leads into a dynamic MSM.

Static MSMs can also include behavioral relations, for instance, labor supply as a function of the 
budget set (incomes, taxes and benefits). A static model (in the usual economic sense) has no time 
dimension, but, in practice, a micro- simulation analyst wants to say something about a population in 
real time. It follows from the tax and benefit rules that a static tax- benefit model without behavioral 
relations gives the immediate, first- order effects of tax and benefit changes, but if behavioral relations 
are included, there is an issue about their interpretation. Does a labor supply relation, for instance, 
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give the behavioral response which materialize within a year, or does it give the total accumulated 
effect until some steady state is reached? Most economists probably think of static models in the latter 
sense, but this raises new issues. To test and estimate such a model one needs a sample of individuals 
who have all reached a steady state. Is the adjustment process so quick that a random cross- section 
of individuals is suitable for inference?

There is no general and simple answer to this question, but let us assume that the adjustment 
process is almost immediate. An inference would then have to account both for the random uncer-
tainty, which arises because the model is simulated on a sample of initial conditions, and the uncer-
tainty which is generated by the estimated behavioral model. The latter will include two components. 
The first arises because the unknown parameters are estimated. The properties of these estimates 
depend on the properties of the model, how data were obtained and on what estimation method 
was used. The second component arises because invoking a random number generator simulates 
the estimated model. The properties of simulations from a static model and how to estimate various 
variance components is discussed in some detail in Klevmarken (1998). It is a problem that we do not 
know and cannot simulate the values of the exogenous variables of the observations not included in 
the sample. An inference has to be conditioned on the observed exogenous variables in the sample. 
If estimators can be written as sums of individual contributions then Horvitz- Thompson estimators 
are consistent, but for more general parameters there might not be any finite sample estimator (see 
Pudney and Sutherland, 1996).

3. Inference in dynamic MSM
In a dynamic MSM, there is no constant population to which an inference can be drawn, because the 
model defines how the population changes both in size and in composition. Only an inference to the 
super- population defined by the model would seem meaningful. Let’s write the model in the following 
way:

 yt = g(yt−1, • • •, yt−s | y0, ϵt, θ)  (1)

where y0 is a vector of initial conditions, in practice set by the sample on which the simulations are 
done.

Suppose we are interested in estimating

 
Eε1,...,εt,y0 (µ(yt)) =

ˆ
...
¨

µ(yt) f(ε1)... f(εt) f(y0) dε1... dεt dy0;
  

(2)

it is assumed that  ϵs, , ϵt  and y0 are independent for all s  ̸=  t and that f is known. µ(yt) is a statistic 
of interest. The distribution of y0 will, in practice, become estimated by the corresponding empirical 
distribution function obtained through the sample of initial conditions. One could either condition on 
the sample of initial conditions, if t is large and the model has some ergodic properties the influence 
of y0 becomes small, or one could use the bootstrap technique to evaluate the random influence from 
the choice of initial conditions sample.

In general, it will not be possible to evaluate expression (2) analytically, but by replicated drawings 
from the distribution of ϵ  a number of replications of µ is obtained, and the mean of these µ-values is 
an unbiased estimate of expression (2). This procedure assumes that the parameters θ  are known. In 
practice, they are not and have to be replaced by some estimates θ̂  . This implies that the simulated 
estimate of (2) is a random function of θ̂  . If µ and g satisfy certain regularity conditions1 and if θ̂  is 
a consistent estimate of θ , then the estimate of E(µ) is consistent too. But even if θ̂  is unbiased, the 
estimate of E(µ) is, in general, not unbiased, because µ and g are nonlinear functions. By replicating 

also over the domain of θ̂  we might thus like to estimate 
 
E
θ̂

Eϵ1, ..., ϵt , y0

(
µ
(

yt|θ̂
) )

 
. These replicated 

simulations will also give an estimate of the corresponding variance.

1. MSM often include discontinuities which could imply that these regularity conditions do not hold, but models 
are more likely to be continuous in the behavioral parameters θ  than in variables, the values of which are deter-
mined by legislation and government rules.
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4. Estimation of parameters in behavioral models
4.1. Model alignment using external information - an estimation 
problem
Our limited capacity as model builders, the difficulties to get good comprehensive data from which 
the model parameters can be estimated, and the piece wise approach usually adopted, in practice, 
to estimate the model sub- model by sub- model, all contribute to deviations of simulated values and 
distributions from observed data. To make the model "stay on track" some model builders have 
aligned their models to external benchmark data. Population totals and means from official statistics 
or estimates from surveys not used to estimate the model are sometimes used as benchmarks. If a 
model is to gain credibility with users they often require that the model is able to reproduce the basic 
demographic structure of the population and predict well- known benchmarks like for instance, the 
labor force participation rate, the unemployment rate, the mean and dispersion of disposable income, 
etc. For this reason, model builders have forced their models to predict these numbers without error. 
In the US model, CORESIM, for instance, adjusting the simulated values (and not the parameter esti-
mates) does this alignment (see Caldwell, 1988; Caldwell, 1993; Caldwell, 1996).

Alignment is usually done by simple proportional adjustments, but there are also more sophisti-
cated procedures. The ADJUST procedure developed by Merz (Merz, 1993; Merz, 1994) and origi-
nally designed for reweighting in static models (cf. above) might also be used for alignment. However, 
in this context the whole approach appears even more ad hoe than when it is used for reweighting. It 
does not consider the stochastic properties of the model at all.

A natural way to incorporate this kind of externally given information is to look upon the estima-
tion problem as one of constrained estimation. For linear models, this approach is discussed in many 
textbooks of statistics and econometrics. Assume the following simple model:

 Yt = Ztθ + εt, E(εt | Zt) = 0,  (3)

where Yt and Zt are n x 1 and n x k matrices. Also, assume a total  
−y t0  is known for period  t0 ≤ T  . 

This information can be used as a constraint on the least- squares estimates of θ . The constraint then 
becomes

 Rθ = ȳt0 , where R = N
n J′Zt0 ;  (4)

J is a unit vector, and N the size of the population for which the total applies. When the constrained 
least- squares estimator is used for prediction, the predictions can be written on the following form:

 Ỹτ = {I + Zτ (Z′Z)−1 R′[R(Z′Z)−1 R′]−1(ȳt0
− Rθ̂)[(Zτ θ̂)′(Zτ θ̂)]−1(Zτ θ̂)′}(Zτ θ̂).  (5)

They are BLUP within the class that satisfies the constraint. Simulated values are obtained by adding 
random errors with mean zero drawn from an appropriate probability distribution. The matrix in curly 
brackets is a matrix of alignment factors. The simulated Y- values will give a total for the period  t0  equal 
to the known total  

−y t0  except for a small simulation error with mean zero, which is N times the mean 
of the simulation errors. The following conclusions can be drawn: alignment should, in general, not be 
done with simple proportional alignment factors, but each individual gets its own alignment factor. 
Also, in a model with more than one endogenous variable a constraint which applies to one variable 
will, in general, not only imply an alignment of that particular variable but also of all other variables. 
Furthermore, in nonlinear models there will, in general, not exist as simple alignment factors as in the 
linear case.

One might also note that it is possible to have an alignment, which simulates the known total 
exactly. Practitioners seem to prefer this kind of alignment. The alignment matrix would then become 
a function of the randomly drawn simulation errors. Let the simulation error be  ϵ

s
t ,  then the new align-

ment matrix obtains if Yt is replaced by  Yt − ϵs
t   in the least- squares estimate of θ , and  

−y t0  by  
−y t0 − ϵs

t0

 . One would thus have to re- estimate the parameters for every new simulation. However, given the 
random specification of the model it is not clear why one would like to use the external information in 
this way. The model is not set up such that it should replicate the same total every time.

If the external data are estimates rather than population parameters that is a reason not to enforce 
an exact equality even in the mean. A natural approach to incorporate uncertain external information 
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is that of mixed estimation, a technique, which is well developed for linear models in many textbooks, 
but less developed for nonlinear models.

4.2. Model-wide or piece wise estimation
Given the complexity and mixture of model types and functional forms in a large MSM its parame-
ters are usually estimated in a piecemeal way, sub- model by sub- model. This is sometimes necessary 
because one does not always have access to one large sample including all variables, but have to use 
several samples collected from different sources. Nonetheless, the piece wise approach may be inap-
propriate. It depends on the model structure. If the model has an hierarchical or a recursive structure 
and if the stochastic structure impose independence or lack of correlation between model blocks or 
sub- models, then a piece wise approach can be justified (cf. the discussion in Klevmarken, 1997).

By way of an example consider the following simple two- equation model:

 

y1t = β1xt + ε1t, y2t = β2y1t + ε2t, E(εi, εj) =





σ2
1 if i = j = 1,

σ2
2 if i = j = 2,

0 if i ̸= j,   

(6)

This is a recursive model, and it is well- known that OLS applied to each equation separately will give 
consistent estimates of  β1 , and  β2 . The estimate of  β1  gives the BLUP  ̂y1t = β̂1xt  while predictions of y2 
outside the sample range are  β̂2ŷ1 . However, this suggests the folloing model- wide criterion:

 
1
σ2

1

∑
t

(y1t − ŷ1t)2 + 1
σ2

2

∑
t

(y2t − β̂2ŷ1t)2

  (7)

Minimizing this criterion with respect to  ̂β1  and  ̂β2  yields the OLS estimator for  β1  but the following 
estimator for  β2  :

 
β̂2 =

∑
t

y2txt
∑

t
y1txt

;
  

(8)

In this case, both the "piece wise" OLS estimator of  β2  and the "system- wide" instrumental variable 
estimator (8) are consistent but the OLS estimator does not minimize the prediction errors as defined 
by (7). In fact, under the additional assumption of normal errors the estimator (8) is a maximum likeli-
hood estimator and thus asymptotically efficient.2

If we would add the assumption that  ϵ1  and  ϵ2  are correlated the recursive property of the model 
is lost and OLS is no longer a consistent estimator of  β2  . The estimator (8) is, however, still consistent 
and under the assumption of normality an ML estimator. In this example we would thus prefer the 
"system- wide" estimator (8) whether the model is recursive or not.

In applied micro- simulation work it might not always be necessary to insist on efficient estimators. 
Usually, large micro- data sets are used for estimation and then also the variance of less efficient esti-
mators might become acceptable. In the above example we could perhaps do with the piece wise 
OLS estimator if the sample is large, but only if the model is recursive.

Finally, a more general comment on the choice of estimation criterion is in place. The least- squares 
criteria commonly used assume that we seek parameters estimates such that the mean predictions 
give the smallest possible prediction errors, Eq. (7) is an example. However, in micro- simulation we 
are not only interested in mean predictions, but we want to simulate well the whole distribution of the 
target variables. This difference in focus between micro- simulation and a more conventional econo-
metric analysis might suggest a different estimation criterion. We will return to this topic in Section 
4.3.

2. The estimator (8) is an ML estimator because there is no additional x- regressor in the second relation. The 
reduced form becomes a SURE system with the same explanatory variable in both equations. In general, the ML 
estimator will depend on the structure of the covariance matrix of the errors.
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4.3. Simulation-based estimation3

The complexity and nonlinear character of MSM and the fact that they are designed to simulate 
suggest that simulation- based estimation is a feasible approach to obtain system- wide estimates. A 
discussion of simulation- based estimation does not only lead to new estimators but also highlight the 
need to change the conventional estimation criteria to one, which is compatible with the simulation 
context. Assume the following simple model:

 yt = g(xt, ϵt, θ)  (9)

where xt is an exogenous variable,  ϵt  a random variable with known p.d.f. and θ  an unknown 
parameter.

 E(yt | xt) = E(g(xt, εt, θ0) | xt) = k(xt, θ0)  (10)

We assume that  k
(
xt, θ

)
  does not have a closed form.

The basic idea of estimating θ  is to obtain a distribution of simulated y- values,  ys
t   with proper-

ties which as closely as possible agree with those of the p.d.f. of yt. It would appear to be a natural 
approach to choose θ̂  such that it minimizes

 
∑n

t=1(yt − ys
t (θ̂))2

  (11)

However, as shown in Gouriéroux and Monfort (1996) (p. 20), this "path calibrated" estimator is 
not necessarily consistent. To see this, consider an example, which differs a little from the one, used in 
Gouriéroux and Monfort (1996). Assume the following simple model:

 y = βx + σϵ, where ϵ ∼ IID(0, 1)  (12)

We seek parameter estimates  
∼
β  and 

∼
σ  such that the model can be simulated,

 ys =
∼
βx + ∼

σϵs
  (13)

where ϵs  are draws independently of ϵ  but from the same (known) distribution. Inserting (13) into 
(11) and solving the first- order conditions gives the following estimators:

 

∼
β =

∑
xy−∼

σ
∑

xϵs∑
x2  ,  (14)

 
∼
σ =

∑(
βx+σϵ

)
x
∑

xϵs−
∑(

βx+σϵ
)
ϵs ∑ x2

(∑
xϵs

)2−
∑(

ϵs
)2 ∑ x2   

(15)

From the assumptions made and the additional assumption that (1 / n)  
∑

x2
  converges to a finite 

limit when n tends towards infinity, it follows that

 plimn→∞ σ̃ = 0 and plimn→∞ β̃ = β  (16)

Using this criterion, we thus get an inconsistent estimate of σ  but a consistent estimate of  β . 
Essentially, this estimator tells us to ignore the random drawings of ϵs  when we simulate, i.e. only 
to use mean predictions. As already noted, such a procedure does not agree with the objective of 
micro- simulation. In this particular model, the estimate of  β  is consistent, but if there was a functional 
relation between  β  and σ  then the slope would also become inconsistently estimated. It is perhaps 
possible to generalize this result and suggest that if there is any functional relation between the 
parameters, which determine the mean path and those determining the dispersion around this path 
in an MSM, then one cannot use a path- calibrated estimator.

An alternative approach is to use a "moment calibrated" estimator, which minimizes the distance 
between observed and simulated moments. This approach does not only permit calibration to 

3. This section relies to a large extent on the book by Gouriéroux and Monfort (1996).
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moments in cross- sectional distributions, but also to transition frequencies and intertemporal correla-
tions, which become important in dynamic models.

Let θ  be a vector of size p and Xt a vector of size r. Furthermore, let K(yt, Xt) be a vector function 
of size q, and

 E(K(yt, xt) | xt, θ0) = k(xt, θ0)  (17)

K could, for instance, be the identity function and the square of yt. Also, define a r x q matrix Zt = 
Iq q 

⊗
 xt. From the exogeneity of xt it follows that

 E[Zt(K(yt, xt) − k(xt, θ0))] = 0  (18)

Because there is no closed form of k(xt,  θ0 ), we will define an unbiased simulator of k,

 
∼
k(xt, ϵs, θ) = 1

s
∑s

s=1 K
(
g
(
xt, ϵs

t , θ
)

, xt
)

;  (19)

where ϵs  is a vector of s independent random errors  ϵ
s
t   drawn from the p.d.f. of  ϵt  .

A simulated GMM estimator is then obtained as

 
θ̂ = argmin

θ
(
∑n

t=1 Zt[K(yt, xt) −
∼
k (xt, εs, θ)]Ω(

n∑
t=1

Zt[K(yt, xt) −
∼
k (xt, εs, θ)])

  
(20)

where Ω  is a r x r symmetric positive semi- definite matrix. As shown in Gouriéroux and Monfort 
(1996), this is a consistent estimator. The covariance matrix of the estimator has two components, one 
which is the covariance matrix of the ordinary GMM estimator, and one, which depends on how well k is 
simulated. An optimal choice of Ω  depends on the unknown distribution of yt. A simulation estimator of 
the optimal Ω  is given in Gouriéroux and Monfort (1996) (p. 32). Two observations are in place.

The number of moment conditions (18) invoked must be no less than the number of unknown 
parameters, otherwise the model becomes unidentified.

The quadratic expression in (20) can be minimized using the usual gradient- based methods if first 
and second- order derivatives with respect to θ  exist. If the model includes discontinuities in θ  one 
would have to rely on methods not using gradients. MSM which include tax and benefit legislation 
typically have discontinuities in variables, which may or may not imply discontinuities with respect to 
behavioral parameters.

It should be possible to include constraints of the kind discussed in a previous section in the simu-
lation  based approach. Suppose K is the identity function in yt, so the moment condition becomes

 E(yt − E(g(xt, εt, θ0))) = 0  (21)

The empirical correspondence to the expression to the left of the equality sign is

 
¯̃y − 1

n

n∑
t=1

k̃(xt, εs, θ0).
  

(22)

Suppose now that we know the finite sample mean 
−
Y   . How could we use this information? If we 

also knew the Xt values for all individuals in the finite sample, we could substitute  
−y   in (22) for 

−
Y   and 

extend the summation in the second term of (22) to N, and thus get an empirical correspondence 
to (21) for the whole finite population. In practice, this is of course not possible. One only knows the 
x- observations of the sample, but with known selection probabilities pt they can be used to compute 
the following estimate:

 
−
Y − 1

N
∑n

t=1
1
pt

∼
k
(
xt, ϵs, θ0

)
.  (23)

The covariance matrix of the resulting estimate θ  should now have a third component, which reflects 
the sampling from the finite population. (A simple numerical example is provided in Klevmarken (1998).)
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5. Model validation
Lacking measures of the quality of an MSM most practitioners validate their models by analyzing how 
closely they track observed data and known benchmarks.

If the tax and benefit legislation has been translated into computer code with sufficient detail and 
care and the data are detailed and accurate enough, there is no need to validate a conventional static 
tax- benefit model without behavioral adjustments, because there is nothing to validate. However, if 
the simulation model includes behavioral adjustments, there is a validation problem. But how would 
one go about validating a static model? Is it at all possible? The problem with the comparative statics 
of a static MSM is that it does not give predictions for any specific point in time or time interval, and 
thus, it is hard to know to what the simulations should be compared. Suppose for instance, that a 
labor force participation equation is estimated from a cross- section at the end of a long period of 
unchanged tax and benefit systems and a stable labor market. Then a major tax reform takes place. Is 
it a good idea to validate the predictions from this model by comparing with observed participation 
rates from the first, second or third year after the reform?

Validation of a dynamic and dated model does not suffer from the same problem. In this case simu-
lated values have a correspondence in the real world. Validation involves two major issues. First the 
choice of criterion and validation measure, and second the derivation of the stochastic properties of 
this measure taking all sources of uncertainty into account. The choice of criterion for validation is of 
course closely related to that for estimation. As already mentioned, in dynamic micro- simulation we 
are not only inter ested in good mean predictions, but also in good representations of cross- sectional 
distributions and of transitions between states. When an event occurs becomes important. A MSM 
is likely to have a number of simplifying assumptions about lack of correlation and independence, 
both between individuals and over time. For this reason, one might expect too much random noise 
in the simulations and too quickly decaying correlations compared to real data. In addition to model 
wide criteria, one might thus be interested in criteria that focus on these particular properties. Work 
is needed to develop such measures with known properties.

For a model not too big and complex in structure it might be feasible to derive an analytic expres-
sion for the variance- covariance matrix of the simulations, which takes all sources of uncertainty into 
account: random sampling, estimation and simulation errors (for an example, see Pudney and Suther-
land (1996)). In general, MSMs are so complex that analytical solutions are unlikely. Given the param-
eter estimates the simulation uncertainty can be evaluated if simulations are replicated with new 
random number generator seeds for each replication. There is a trade- off between the number of 
replications needed and the sample size. The bigger sample the fewer replications.

To evaluate the uncertainty which arises through the parameter estimates one approach is to 
approximate the distribution of the estimates with a multivariate normal distribution with mean vector 
and covariance matrix equal to that of the estimated parameters. By repeated draws from this normal 
distribution and new model simulations for each draw of parameter values an estimate of the vari-
ability in the simulation due to uncertainty about the true parameter values can be obtained.

To avoid the normal approximation, one might use sample re- use methods. For instance, by boot 
strapping one can obtain a set of replicated estimates of the model parameters. Each replication can 
be used in one or more simulation runs, and the variance of these simulations will capture both the 
variability in parameter estimates and the variability due to simulation (model) errors. If the boot strap 
samples are used not only to estimate the parameters but also as replicated bases (initial conditions) 
for the simulations, then one would also be able to capture the random sampling errors.

Much of the total error in simulated values will come from the choice of a particular model struc-
ture. Sensitivity analysis is an approach to assess the importance of this source of error. As pointed 
out in Citro and Hanushek (1997) (p. 155) "sensitivity analysis is a diagnostic tool for ascertaining 
which parts of an overall model could have the largest impact on results and, therefore, are the most 
important to scrutinize for potential errors that could be reduced or eliminated". If simple measures 
of the impact on key variables from marginal changes in parameters and exogenous entities could be 
computed they would potentially become very useful.
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6. Concluding remarks
The credibility of MSMs with the research community as well as with users will in the long run depend 
on the application of sound principles of inference in the estimation, testing and validation of these 
models. This paper has reviewed a few issues of inference in static and dynamic MSMs.

The application of a model- wide estimation criterion will, in general, suggest an estimator, which 
does not permit a piece wise estimation of sub- model by sub- model. Only if the model has a hierar-
chical or recursive structure it is possible to use a piece wise approach.

It was also suggested that the alignment procedures now used in practical work could be seen 
as part of the estimation procedure. It followed that one should, in general, not use simple propor-
tional alignment. It is important to note that the constraints imposed by alignment must be tested if 
accepted by data. If they are not that is a clear indication that something is wrong with the model, and 
it should be reformulated rather than forced "on track" by alignment.

It was also suggested that the simulation approach to estimation could be useful in micro- 
simulation work. These models are designed to simulate, and they also frequently include nonlinear 
and complex rela tions, which suggests that simulation- based estimation has a relative advantage. 
However, path- calibrated estimates are, in general, inconsistent and should be avoided, in particular 
in a micro- simulation context which does not only focus on mean relations. A better alternative is 
moment- calibrated estimates.

The maximum likelihood approach was never mentioned in the discussion of estimation issues 
above. Usually, one has very little reason to choose a particular family of distributions a priori, and an 
unrealistic but convenient choice might seriously distort the simulated distributions. Please remember 
that this is an important issue in micro- simulation. To preserve the distributional properties of data 
when simulating one sometimes chooses not to draw random errors from a specified distribution 
like the normal, but from empirical distributions of residuals. The maximum likelihood approach then 
becomes impossible.

Finally, there is the issue of whether it is practically feasible to use the suggestions given above. 
The pro grams of some of the MSMs now used, in practice, need so much computer time for one 
single simulation that any method that needs repeated simulations would seem unpractical. However, 
programming code, programming skills and computers become ever faster, and more recent models 
tend to run much faster than old models. Depending on model structure it might also become possible 
to apply the approaches suggested to smaller sub- models.
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