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Since the start of microsimulation in economics with Orcutt’s seminal 1957 article (Orcutt, 1957), and 
the first dynamic microsimulation model in the United States (Orcutt, 1961), this approach has in the 
past almost 40 years been both successful and met with a great degree of skepticism. Successful to 
the extent that static microsimulation models have become a standard tool for policy evaluation in 
most Western governments, but at the same time less accepted among academic economists, who 
sometimes find unacceptable the compromises between theoretical and methodological rigor and 
what is feasible given insufficient data and resources. They have not seen a microsimulation model as 
a useful tool in developing and testing theory.

Nonetheless, there is a rather impressive list of micro simulation models as shown by recent surveys, 
for instance, Merz (1991), Mot (1992), the OECD (1988) and Sutherland (1995), and by a number of 
conference volumes, for instance, Bergman et al. (1980), Orcutt et al. (1986) and Harding (1996). 
Many microsimulation models are static without behavioral relations, and this is in particular true 
for models run by government agencies, international organizations and consulting firms. Behavioral 
modeling is still to a large extent an academic exercise. Tables 1–3 list models which at least include 
some behavioral relation. These tables have been put together using primary as well as secondary 
sources, for instance the survey articles mentioned above, which implies that a few models could well 
have become misclassified. What defines a behavioral relation is not crystal clear. A matrix of transition 
probabilities differentiated by age and sex is a simple behavioral relation in the sense that behavior is 
differentiated by age and sex. Some models include relations derived from economic theory but this is 
not a requirement for a model to become classified as behavioral. For instance, demographic models 
of transition matrix type have been included. Although these models include behavioral heteroge-
neity in a broad sense many of them do not capture any behavioral response to policy changes. Their 
behavioral relations do not include the relevant policy parameters.

There is also another type of behavioral modeling applied to micro simulation models where 
behavior is modeled at an aggregate level. The aggregate implications are then subsequently disag-
gregated in a micro simulation model. An example is Meagher (1996). A dynamic general equilibrium 
model of the Australian economy is used to compute growth rates in the (factor) incomes of selected 
groups. These income changes are then fed into a static micro simulation model, which produces 
simulations of the after- tax income distribution. A similar application is also given in Baekgaard and 
Robinson (1997). In the following we will not pursue further the linkage with the macro economy.

Table 1 includes static MSM with behavioral relations. One may note that among the most common 
behavioral relations are those of labor supply but there are also models which include expenditure 
functions to simulate the effects and changes in indirect taxation. The early models were designed in 
the United States while the Europeans caught up in the 1980s and now seem to dominate the work 
with static behavioral models.

Table 2 lists general dynamic models with behavioral relations. “General” here means two things. 
The model is not specialized for a very limited purpose or limited to a small group of individuals 
or households, and it contains more than a single or just a few behavioral relations. Most of these 
models are large and cover the whole household sector in a country and include modules which age 
their populations as well as modules which are more central to the general purpose of the models, 
for instance, labor supply relations which capture behavioral adjustments in the labor market to tax 
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changes. The behavioral relations of all models, however, are not specified such that behavior directly 
depends on the policy instruments, some are more of a demographic type. Also, in dynamic modeling 
the Americans were pioneers. In Europe German scientists would seem to have worked relatively early 
with dynamic microsimulation models.

Table  3 shows microsimulation models with a more specialized aim and limited scope. Labor 
market behavior is dominating among these models as well, but here is a greater variety of coverage: 
consumption behavior, housing demand, demand for energy, childcare, telephone services and non- 
market time. Most of these models are probably more closely based on economic models and econo-
metric testing and estimation than the big general dynamic models.

1. Behavioral modeling for three purposes
A Behavioral model can serve at least three purposes in a microsimulation model. First it could be used 
to impute missing data as an alternative to statistical matching (see Klevmarken, 1983).1 Suppose 
there are X1 data in the data set used for simulation, but X2 data are missing, and that there is another 
data set with both X1 and X2 data. If X2 can be related to X1 by way of a behavioral model then the 
model can be estimated from the second, external data set and used in the micro simulation model 
to simulate X2. Such a relation need not be based on theory about behavior, what is needed is a good 
predictive relation, but if it is delivered from good theory, one would probably have more confidence 
in its predictive ability.

Table 1. Static models with behavioral modeling

Model References Country Behavior

STATS Bridges and Johnston (1976) USA Program participation

MATH

Beebout (1977)
Kidd (1979)
Doyle and Whitmore (1982)
Beebout (1986)

USA Demographics and labor supply,
Program participation

KGB Betson et al. (1982)
O’Reilly (1977) USA Labor supply

Program participation

TRIM Webb (1979)
Webb and Chow (1978) USA   

TAXSIM Feldstein (1983) USA Labor supply, demand for housing, charitable giving

Sfb3 Galler and Wagner (1986) FRG   

Sfb3 Merz (1985); ; Merz (1986) FRG   

MICSIM

Merz (1989a); Merz (1989b); 
Merz (1990); Merz (1989b); Merz 
and Buxmann (1990)
Merz and Buxmann (1990)

FRG Labor supply

  Bekkering et al. (1986); Grift 
et al. (1991) NE Labor supply

  Chernick et al. (1987) USA Health insurance and demand for medical services

  van Soest (1989) NE Labor supply

  Kapteyn et al. (1989) NE Labor supply

  Grift et al. (1991) NE Labor supply

TAXBEN/
SPAIN

Giles and McCrae (1995)
Johnson et al. (1990)
Duncan (1991)

UK Labor supply

CNAF Grignon and Pennec (1998) F Fertility, housing

INDICE Patrizii and Rossi (1991) I Household expenditures - indirect taxes

INDIMOD Baldini (1995) I Household expenditures
- indirect taxes

ASTER Decoster et al. (1994) B Household expenditures- indirect taxes

POLIMOD Redmond et al. (1995); 
Sutherland (1995) UK Labor supply
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Behavioral models can also be used to age the simulation population (sample). This is usually 
done by introducing mortality tables, relations for the birth of new individuals, marriages, separations 
etc. Similarly, behavioral relations could update other characteristics of the population like the labor 
force participation, unemployment, hours of work, wage rates, housing, childcare etc. As long as the 
purpose is limited to updating, behavioral relations are only needed to the extent that they yield 
more stable and precise predictive relations compared to alternative ways of updating the popula-
tion. In practice many models use matrices of transition probabilities estimated separately for a few 
subgroups of the population, for instance, by age and sex, but with no strong connection to theory.

The third and perhaps most interesting application of behavioral relations is to capture behavioral 
adjustments to policy changes. A necessary requirement of a behavioral model to satisfy this purpose 

Table 2. General dynamic models with behavioral relations

Model References Country

DYNASIM Orcutt et al. (1976) USA

DYNASIM II
Johnson and Zedlewski (1982); Johnson et al. (1983); 
Zedlewski (1990)
Wertheimer et al. (1986)

USA

MICROSIM McKay (1978) USA

MICROSIM/MASS Orcutt and Smith (1979) USA

Sfb3- MSM

Helberger (1982)
Hain and Helberger (1986)
Galler and Wagner (1986)
Galler (1989)

FRG

CORSIM Caldwell (1988); Caldwell (1993) USA

HARDING Harding (1990); Harding (1993) UK, AUS

DEMOGEN Wolfson (1990) CAN

LIFEMOD Falkingham and Lessof (1991); Falkingham and Lessof 
(1992) UK

MOSART Andreassen et al. (1992); Andreassen (1993); 
Andreassen et al. (1993); Andreassen et al. (1994) N

MICROHUS Klevmarken et al. (1992)
Klevmarken and Olovsson (1996) S

DYNAMOD Antcliff (1993) AUS

NEDYMAS Nelissen (1994) NE

Table 3. Specialized models with behavioral relations

Model References Country Behavior

RFV- ATP Eriksen (1973); Klevmarken (1973), S Life cycle earnings demographic transitions

Mikropolis Bekkering et al. (1989) NE Labor supply labor demand

PRISIM Kennel and Sheils (1986); Kennel and 
Sheils (1990) USA Decision to retire and accept pension benefits

  Atherton et al. (1990) USA Local residential telephone demand

SPEND Baker (1991) UK Energy demand

SPIT Baker and Symons (1991) UK Household consumption - indirect taxation

  Erksoy (1992a); Erksoy (1992b); Erksoy 
(1994) CAN Unemployment

  Baekgaard (1993) DK Demand for child care

  Merz (1993) FRG Market and nonmarket labor supply

  Bekkering (1995) NE
Labor market
(demographic and educational transitions by 
constant probabilities)

  Symons and Warren (1996) AUS Household consumption behavior

TOPSIM I Holm et al. (1996) S Regional demography

  Fransson (1997) S Household formation and housing market

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/methodology
https://microsimulation.pub/subjects/miscellaneous
https://doi.org/10.34196/ijm.00251


 
Research article

Methodology; Miscellaneous

Klevmarken. International Journal of Microsimulation 2022; 15(1); 78–88 DOI: https:// doi. org/ 10. 34196/ ijm. 00251 81

is that the policy parameters directly or indirectly enter the model. This is normally not the case in the 
simple transition matrixes used for aging and updating. For instance, in a study of the distributional 
effects of income tax changes the labor supply function should be such that labor supply depends on 
the tax rates (and virtual income). A second requirement is that the behavioral relation is stable such 
that its parameters do not change as a result of policy changes. This is an issue much discussed, for 
instance, in relation to the recent major tax reforms in many countries. Can labor supply relations esti-
mated on data collected before the reforms be used to predict or evaluate the effects of the reforms? 
Are the parameter estimates stable in spite of the large tax changes in some countries? The same 
kind of concern could be raised when microsimulation models are used to simulate processes of long 
duration, for instance changes in pension systems. Is it possible to extrapolate long into the future 
earnings and labor supply relations estimated from short time spans of data?

2. Behavioral modeling in static micro simulation models
To emphasize the policy evaluation application of micro simulation models and make behavioral adjust-
ments explicit assume there are three kinds of variables: Policy variables Xp, target variables Y and all 
other variables Xnp. For instance, one could think of Xp as tax rates and tax bases, Y as taxes paid and 
after tax income, while Xnp would include variables needed to compute taxes like labor incomes and 
nonlabor incomes, and group indices like sex, marital status, nationality, region, etc. In a conventional 
nonbehavioral static tax- benefit model policy variables are related to the target variables through the 
tax and benefit system conditional on Xnp. For a single individual we could write this relation as,

 Y = T(Xp, Xnp)  (3)

In a microsimulation application of this model we compare the distributions of

 Y1 = T(Xp1, Xnp0)  (4a)

and

 Y2 = T(Xp2, Xnp0).  (4b)

for two different policy regimes Xp1 and Xp2 and a given set of population characteristics Xnp 0.
Replicated static microsimulation actually approximates the distribution,

 f(Y1, Y2, |Xp1, Xp2, Xnp0).  (5)

from which we can compute the marginal distributions by simple summation,

 
f(Y1|Xp1) =

ˆ
f(Y1|Xp1, Xnp0)f(Xnp0)dXnp0

  
(6a)

and

 
f(Y2|Xp2) =

ˆ
f(Y2|Xp2, Xnp0)f(Xnp0)dXnp0

  
(6b)

and various distributions conditional on subsets of Xnp0, for instance on gender, type of family, 
region, etc. It is here assumed that the empirical distribution of Xnp0 in the microsimulation model 
closely approximates the true distribution of Xnp0, which for instance would be the case if the sample 
used for micro simulation is a simple random sample from the target population. (If the sample is 
drawn with unequal sampling probabilities one would have to compensate for this by using appro-
priate sampling weights.)

If the model T(..) is just a nonstochastic tax- benefit model the distribution (5) could be a degen-
erate one- point distribution. It is of course still possible to compute the marginal distributions (6a) and 
(6b) and various conditional distributions. If T(..) is a stochastic model and the simulation is only done 
once we might not get a good approximation of the distribution (5), depending on how frequently 
Xnp0 is replicated in the simulated population. The reason is of course that we will only get one obser-
vation (Y1, Y2) for each individual. However, we can still compute good approximations of the marginal 
distributions (6a) and (6b) and various interesting conditional distributions.
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The marginal distribution f(Y1, Y2| Xp1, Xp2) is of particular interest, because it tells us, for instance, 
about the after tax income mobility. What share of the population move from one after tax income 
decile to another as a result of the change in policy? Although Xnp0 has been integrated out f(Y1, Y2| Xp1, 
Xp2) is only valid for a population with the characteristics Xnp0. Please also note that nothing is said and 
nothing can be said about the individual trajectories through time which result from a policy change. 
Nor do we say anything about changes through time in the distribution of Y or when a certain share 
of the population has moved from one decil to another.

Assume now that in addition to the tax- benefit model some of the variables Xnp also depend on the 
policy regime. To mark their changed status call them Yp , and keep the old notation Xnp for variables 
which are truly exogenous. A static model with behavioral adjustments could be written as,

 Y = T(Xp, Yp, Xnp)  (7a)

 Yp = C(Xp, Xnp)  (7b)

Where C is a function which relates the policy variables to individual behavior of relevance for the 
target variables. One could, for instance think of C as a labor supply model which determines hours of 
work (Yp) as a function of the tax rates, deductions and thresholds (Xp) and wage rates and nonlabor 
incomes (Xnp). All these variables thus jointly determine disposable income.

Microsimulation of this model will, for instance, involve a comparison of the following two 
distributions,

 f(Y1, Yp1|Xp1, Xnp0) and f(Y2, Yp2|Xp2, Xnp0)  (8)

and the corresponding pairs of marginal distributions,

 f(Y1|Xp1, Xnp0) and f(Y2|Xp2, Xnp0)  (9)

and

 f(Y1|Xp1) and f(Y2|Xp2)  (10)

Again, there is no time dimension in this model. Although it is possible to compute the distribu-
tion f(Y1, Y2, Yp1, Yp2 | Xp1, Xp2), which, for instance could tell us what share of the unemployed became 
employed as a result of the policy change, it does not tell us when. Depending on how the model 
is designed and estimated and the simulations done this distribution might also vastly overestimate 
mobility. If C(..) is a stochastic model such that the implicit individual random error is drawn inde-
pendently for each policy regime then the model neglects any unobserved individual heterogeneity 
and it would simulate too much mobility. Although such a model could not be used to evaluate the 
“true” distribution f(Y1, Y2, Yp1, Yp2 | Xp1, Xp2) it might still simulate well the marginal distributions (8), 
(9) and (10).

Suppose, for instance, that C is a static labor supply model of the Hausman type and Yp is hours 
of work, and that this model is simulated for two different tax regimes. If the random “optimization 
errors” of the Hausman model are IID, and independent sets of errors are drawn for the two tax 
regimes, then mobility in hours will most certainly become exaggerated. This excess mobility will then 
transmit to disposable income. In this example the simulated joint distribution of disposable income 
and hours of work for the two policy regimes F(Y1, Y2, Yp1, Yp2| Xp1, Xp2) is the product of the marginal 
distributions f(Yt, Ypt| Xpt), t=1,2. Although this is believed to be unrealistic it does not exclude that 
each of the simulated marginal distributions are good approximations.

One way to reduce mobility is to use the same seed when the two sets of “optimizing errors” 
are drawn. Each individual will then have the same error in both tax regimes. However, there is no 
guarantee this approach will give a realistic representation of mobility. It might well create too little 
mobility. The simulation procedure should be based on empirical studies of mobility, and then a static 
model is not a good framework.
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An alternative explanation to a smaller mobility compared to a purely random process is the pres-
ence of state dependence.2 Assume, for instance, that,

 Yp = C(Xp, Xp0, Y0, Yp0, Xnp).  (11)

In this model behavior does not only depend on the policy Xp chosen and the exogenous charac-
teristics Xnp, but also on a reference "level" of policy Xp0, target variables Y0 and behavioral response 
variables Yp0. For instance, the effect of a tax change on labor supply might depend on the level of 
unemployment when the tax change is implemented. It might also depend on the nature of the tax 
system used immediately before the tax change. The behavioral response to a change in the marginal 
tax rate may depend on whether the rate was higher or lower prior to the change.

3. Families of behavioral models
Only human imagination, data availability and computer resources limit the structures and forms 
behavioral models could take, and it is certainly possible to group existing models in many different 
ways. The following classification indicates the variety of approaches and functional forms used, many 
of which can usually be found within one and the same micro simulation model.

1. Models of transitions between different states: To this class belong models of transition prob-
abilities like Markov- models, probit, logit, multinomial logit and ordered probit models to 
mention a few. It also includes event history (hazard rate) models.

2. Count data models: Count data models like for instance Poisson regression have been used to 
model the number of occurrences of an event in an a priori specified time span or the number 
of time periods an individual belongs to a certain state, for instance, the number of months of 
unemployment in a year or the number of weeks reported absent from work due to sickness 
in a year. These models have been used when event history data were not available, one only 
knew for how many weeks a person had been in a state, for instance sick, but not if these 
weeks formed one or more spells of sickness.

3. Continuous data models: To this group belong conventional linear and nonlinear regression 
models, equation systems etc. In micro simulation models for earnings functions, models for 
work hours and expenditure functions are examples of this model type.

4.  Random assignment schemes (statistical matching): The models of the first three classes 
above belong to the conventional econometric paradigm of estimating an average structure 
from which there are only random deviations. In the first two cases one estimates (average) 
probabilities conditional on certain individual characteristics and the deviation from the most 
probable outcome is accomplished by chance, by throwing a ”loaded dice”. In the third case 
we simulate deviations from the average by adding random disturbances to the ”systematic” 
part of the model. In random assignment schemes like statistical matching, the model struc-
ture is implied and never estimated. It is only defined by the variables which define ”close-
ness”. The idea is to find a donor of data among the observations in the population which in 
some sense is similar or close to the receiving unit. Suppose for instance, that the original data 
set includes observations on income for two consecutive years for each individual. A simu-
lated income distribution for a third year could be obtained by defining closeness between 
the donor’s income in the first year and the receiver’s income in the second year perhaps also 
between other variables like age and sex and then randomly select a donor among those who 
have the (approximately) same age, sex and income as the receiver. The donor’s income for 
the second year is then used as a prediction of the receiver’s income in year three. The implicit 
model assumption is of course that income transitions remain unchanged. With a similar but 
somewhat more elaborate approach Hussenius and Selén (1994) linked short panels of 
income data to life- cycle income paths to analyze how like- cycle incomes were influenced by 
tax and transfer changes. In the MICROHUS model (Klevmarken et al., 1992; Klevmarken 
and Olovsson, 1996) the technique was used to simulate the properties of the house a 
family was predicted to buy (size, tax assessed value, size of mortgage and interest paid). 
 
Advantages with the random assignment technique are thus that no assumptions of functional 
forms or distribution families are needed, if preserves the variation and (most of) the corre-
lation already present in the original data, and it is nonparametric so there is no estimation 

2. In empirical work it might not always be easy to distinguish state dependence from individual heterogeneity.
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of unknown parameters. The choice of variables and the measure used to define closeness 
can be tested by goodness of fit. A disadvantage though is that the statistical properties 
of the resulting ”predictions” are incompletely known. Results from the imputation litera-
ture might be relevant. Another practical disadvantage is that the random assignment tech-
nique can never predict beyond the range of values already present in the original sample. 

With exception of the random assignment technique the more traditional approaches to modeling 
invites the model builder to become excessively parsimonious with the number of estimated param-
eters and the models thus tend to become of the type average behavior with random variation. The 
possibility to permit people to behave fundamentally differently and to study the interaction between 
people with different aims which is feasible within the micro simulation approach, is usually not taken 
advantage of. For instance, with panel data, only a few observations for each individual are needed 
to estimate a utility function for each individual and allow everyone to maximize her own utility. One 
could also think of models when some individuals maximize their utility while the behavior of others 
are guided by something else than utility maximization!

4. The time unit in dynamic models
Continuous time models have the attraction to accommodate any time span one might like to use 
and also to permit different time spans for different purposes and in different sub models. However, 
a continuous time model which would permit the complexity and interaction between individuals 
which is necessary in most micro simulation models would become exceedingly difficult to estimate 
and simulate. It is thus probably not practical to have the entire microsimulation model formulated in 
continuous time. Continuous time might, however, be useful in certain sub models.

In micro simulation models which include income tax systems it is necessary to use the time unit of 
a year because income taxes are usually assessed annually. Some benefit systems, however, operate 
on shorter time spans. For instance, compensation for sickness and unemployment and social assis-
tance might be given on a daily, weekly or monthly basis for the duration of the particular state. There 
is thus a need to use more than one time unit within a micro simulation model. This could be accom-
plished in several ways. One approach is to run simulation loops within a year for those sub models 
which operate on a shorter time unit, another approach is to use count models which simulate the 
number of days, weeks or months a person is sick, unemployed, etc in a year. A third approach is to 
use a continuous time model, for instance an event history model, to simulate the date when a person 
enters and leaves a certain state. The last approach has the advantage that it can accommodate a 
particular problem which sometimes occurs, namely that benefit rules are changed such that the 
change takes effect at a date other than the 1st of January.

5. Conclusions
After the dismal experiences with structural macro models we had the hope that modeling at the 
micro level and using large samples of micro data would yield estimated relations with some stability 
and scope. This hope has only been met to a limited extent (see for instance the discussion of models 
to capture work incentives in Atkinson and Mogensen, 1993). It is hard to know if this is the result of 
the nonexistence of stable micro relations, that the behavior of economic agents changes as the result 
of new policies, new institutions and other external changes, or of insufficient data and inadequate 
research approaches in economics (for a discussion see Klevmarken, 1994), or that the research 
process simply has to take more time. Behavioral modeling in the micro simulation context cannot 
be expected to go much beyond the state of art in economics. In each module of a large microsimu-
lation model modeling meets with the same difficulties as in more conventional economic modeling, 
but in addition it has the difficulty of making the different modules fit together. There are obvious 
problems when modules have to be tested and estimated on different data sets, but there is also a 
requirement of an internal consistency of the model structure. For instance, if one module needs a 
particular explanatory variable, then another module is needed to simulate it such that the simulated 
values can be fed into the first module. To handle these problems the model builder needs a strategy 
as to the general model structure, as discussed above. A piecewise approach in which one starts 
with one module and then takes decisions about subsequent modules depending on the outcome of 
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the research for the first is likely to lead to inconsistencies and to force the model builder to painful 
compromises for practical purposes.

It is also obvious that the availability of a rich data source of micro data will reduce the need to 
use supplementary data sets and thus greatly facilitate modeling. Depending on the purpose it would 
seem essential to have at least the key policy and effect variables included in the same data set. 
Assumptions of independence or conditional independence should be limited to relations which are 
of second order importance to the uses of the microsimulation model. If the dynamics of behavioral 
adjustments is important, which is almost always the case in policy simulations and evaluations, then 
panel data are needed. The large household panel data sets collected in several countries are thus 
essential for the construction of general microsimulation models of the household sector.

Modeling for regions larger than a country, EU for instance, would in principle require comparable 
data collected in all countries. Separate but comparable surveys in each country could be used to 
design comparable models for each country, which could be run one by one. Such an approach would 
make feasible an analysis of the same policy carried out in each country separately, but it would not 
permit the analysis of any interacting effects across boarders. If, for instance tax policies and social 
policies in one country are likely to attract or detract workers from another country, then a data collec-
tion design is needed which permits the survey people to follow respondents from one country to 
another to make feasible an analysis of the region wide policy effects mediated by migration.

Given that the above- mentioned difficulties can be handled in a satisfactory way microsimula-
tion offers in principle opportunities to submit behavioral models to stronger tests than the usual 
diagnostic and specification testing done for each module separately. In addition to these tests a 
microsimulation model can be tested by comparing the simulated results with external data. Because 
simulated data can be aggregated, the data used to ”calibrate” against could either be micro data 
or aggregate data, for instance from the national accounts. It is a practical problem that these data 
need apply to the same population and observational units as the microsimulation model and they 
also need to comply with the same variable definitions.

The methodology for this ”calibration” is not fully developed. In particular there are a few issues 
which should be studied. First, the choice of criterion for a good model, second the inference theory 
needed to decide if the simulated (predicted) data lie within reasonable confidence bands from the 
observed data, and third, methods to evaluate the marginal influence of each parameter on the simu-
lation results. It would be very useful to know which parameters have the most influence on the 
simulated results. A fourth issue is the estimation theory needed to incorporate new benchmark data.

Most of the modeling done in microsimulation is of the type ”average behavior with random devi-
ations”. Conventional econometric models have been plugged into microsimulation models. As indi-
cated above microsimulation offers opportunities to deviate from the paradigm of average behavior 
and allows for systematic differences in behavior, for instance, individual preference parameters esti-
mated from panel data. One should probably also explore more the techniques to copy ”donors” by 
the random assignment approach, which avoids unnecessary restrictive assumptions about functional 
forms.
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