1. Consumption, savings and wealth
Download icon

Modelling private wealth accumulation and spend-down in the Italian microsimulation model CAPP_DYN: A life-cycle approach

  1. Simone Tedeschi  Is a corresponding author
  2. Elena Pisano  Is a corresponding author
  3. Carlo Mazzaferro  Is a corresponding author
  4. Marcello Morciano  Is a corresponding author
  1. Sapienza University of Rome, Italy
  2. Bank of Italy, Italy
  3. University of Bologna and CAPP, Italy
  4. ISER and CAPP, England
Research article
Cite this article as: S. Tedeschi, E. Pisano, C. Mazzaferro, M. Morciano; 2013; Modelling private wealth accumulation and spend-down in the Italian microsimulation model CAPP_DYN: A life-cycle approach; International Journal of Microsimulation; 6(2); 76-122. doi: 10.34196/ijm.00084
10 figures and 8 tables

Figures

A stylized scheme of formation and transmission of wealth in the wealth module.
Estimation and simulation of human resources.
Average equivalent consumption (left) and propensity to save (right) household-head-age-profile.
Post-estimation predicted consumption from dynamic model in level vs ratio.
Average saving propensity (left), propensity to save for active households vs. for retired households (right), 2008–2050.
Propensity to save by age, LC (left) vs. NS (right) simulation, 2011–2020, 2021–2030, 2036–2045 (averages).

Source: Authors’ computations on simulation results.

Evolution of iv and mc transfers recipient households’ share and of the average amount received, 2010–2050.

Source: Authors’ computations on simulation results (2008–2050).

Evolution in the Gini of net worth (left) and disposable income (right), 2010–2050.

Source: Authors’ elaboration on simulation results.

Contributions to wealth Gini variation, LC (left) vs. NS (right) simulation, 2008–2050.
Differential contributions to disposable income Gini variation between high and low returns scenarios, 2007–2050.

Source: Authors’ computations on simulated data.

Tables

Table 1
Three-stage least-squares regression of planned age of retirement and the expected replacement rate.
Equation Obs Parms RMSE R-sq chi2 P
1. PRA 27194 21 3.435451 0.257 9408.45 0
2. ERR 27194 21 0.163388 0.149 5043.9 0
Planned Age of Retirement Expected Replacement Rate
B SE B Se
year_contrib −0.5187 *** 0.0138 PRA 0.0026 ** 0.0010
year_contrib² −0.0093 *** 0.0003 year_contrib 0.0064 *** 0.0009
age*contrib. 0.0148 *** 0.0003 age*contrib 0.0000 0.0000
female −2.0137 *** 0.0523 NDC −0.0292 0.0180
NDC 0.1496 0.3824 single −0.0024 0.0050
Education (omit.lower secondary)
upper_secondary 0.2877 *** 0.0557 upper secondary 0.0130 *** 0.0026
degree_or_more 0.8929 *** 0.0842 degree or more 0.0094 * 0.0040
self_employed 1.2709 *** 0.0646 self employed −0.1168 *** 0.0033
public −0.2373 *** 0.0632 public 0.0457 *** 0.0030
home_owner −0.1369 * 0.0564 partime −0.0363 *** 0.0047
South 0.6384 *** 0.0580 Centre 0.0321 *** 0.0030
single 0.3774 *** 0.1072 South 0.0427 *** 0.0030
tau2002 0.0625 0.0751 tau2002 −0.0298 *** 0.0035
tau2004 0.2979 *** 0.0774 tau2004 −0.0453 *** 0.0036
tau2006 0.0922 0.0805 tau2006 −0.0739 *** 0.0037
tau2008 0.8402 *** 0.0978 tau2008 −0.0793 *** 0.0047
Cohort effect (omit. Cohorts <1953)
coor_53 1.1369 *** 0.1010 coor_53 0.0122 ** 0.0046
coor_58 2.0562 *** 0.1234 coor_58 0.0165 ** 0.0056
coor_63 2.5093 *** 0.1462 coor_63 0.0257 *** 0.0065
coor_68 2.5112 *** 0.1672 coor_68 0.0393 *** 0.0071
coor-73 2.3387 *** 0.1844 coor-73 0.0660 *** 0.0075
coor_78 2.0769 *** 0.2041 coor_78 0.0688 *** 0.0081
intercept 61.3483 *** 0.1937 intercept 0.4269 *** 0.0635
Endogenous variables: PRA, ERR
  1. *

    p<.05.

  2. **

    p<.01.

  3. ***

    p<.001.

  4. Source: Authors’ computations on SHIW 2000–2008.

Table 2
Dynamic panel-data estimation of the consumption rule, two-step system GMM 16.
ln{C/HR} B Se
Lag.ln{C/HR} 0.0821 *** 0.0209
In_af_en 0.0114 *** 0.0024
In_ar_h −0.0171 *** 0.0014
In_ar_h*n_houses 0.0040 *** 0.0006
In_pf 0.0092 *** 0.0012
quintile 2_income −0.1347 *** 0.0181
quintile 3_income −0.1832 *** 0.0206
quintile 4_income −0.2559 *** 0.0232
quintile 5_income −0.3105 *** 0.0272
hh_age −0.2152 *** 0.0491
hh_age² 0.0066 *** 0.0013
hh_age³ −0.0001 *** 0.0000
hh_age4 0.0000 *** 0.0000
hh_age_self_emp −0.0026 *** 0.0004
hh_age_upper_secondary −0.0009 *** 0.0002
hh_age_degree_or_more −0.0032 *** 0.0004
h_res_life −0.0143 *** 0.0027
hh_retired −0.1282 *** 0.0213
earners_ratio −0.2058 *** 0.0326
n_child_in the family 0.0232 ** 0.0087
South −0.0489 *** 0.0109
Household types (omitt. Nuclear family)
Single 0.0108 0.0211
nuclear single headed 0.1754 *** 0.0356
non_nuclear single headed 0.4704 *** 0.0350
non_nuclear 0.1948 *** 0.0174
Time dummies (omit.tau2002)
tau1993 0.0148 0.0191
tau1995 0.0623 ** 0.0193
tau1998 −0.0699 *** 0.0210
tau2000 −0.4194 *** 0.0194
tau2004 −0.0219 0.0176
tau2006 0.0228 0.0186
tau2008 0.0018 0.0182
intercept −0.2847 0.6923
  1. N = 23,426, number of groups = 10,284.

  2. Arellano-Bond test for AR(1) in first differences: z = −18.00 Pr > z = 0.000.

  3. Arellano-Bond test for AR(2) in first differences: z = 0.49 Pr > z = 0.627.

  4. Sargan test of overid. restrictions: chi2(7) = 7.60 Prob > chi2 = 0.369.

  5. Hansen test of overid. restrictions: chi2(7) = 4.79 Prob > chi2 = 0.685.

  6. Difference-in-Hansen tests of exogeneity of instrument subsets:

  7. GMM instruments for levels.

  8. Hansen test excluding group: chi2(6) = 4.60 Prob > chi2 = 0.596.

  9. Difference (null H = exogenous): chi2(1) = 0.20 Prob > chi2 = 0.658.

  10. *

    p<.05.

  11. **

    p<.01.

  12. ***

    p<.001.

  13. Source: Authors’ computations on SHIW data, Historical Archive, panel component, waves 1991–2008.

Table 3
Two-step estimation for intergenerational giving with Heckman correction.
Donor side N=16,871
Logit Probability of being Donor OLS ln{Ratio}
B Se B Se
age 0.0807 *** 0.0243 age −0.7785 ** 0.2404
age2 −0.0007 *** 0.0002 age2 0.0113 ** 0.0036
in_work 0.3522 *** 0.052 age3 −0.0001 ** 0.000
quintile 3_wealth 0.4146 *** 0.0543 in work −0.4384 *** 0.0866
quintile 4_wealth 0.6046 *** 0.0531 retired −0.2449 ** 0.0849
quintile 5_wealth 0.6989 *** 0.0531 unemp −0.4619 ** 0.1649
child_unemp 0.2835 *** 0.0625 ch_unemp 0.3006 *** 0.0817
wed_or_birth 3.2668 *** 0.1205 quintile 3_wealth −0.5422 *** 0.0752
upper_secondary 0.5074 *** 0.0463 quintile 4_wealth −0.8931 *** 0.0736
degree_or_more 0.742 *** 0.0502 quintile 5_wealth −1.4278 *** 0.0733
Italy −0.2737 *** 0.0747 Italy 0.7029 *** 0.0951
_intercept −4.4368 *** 0.8158 mills_ratio 0.2653 *** 0.0414
_intercept 15.5409 ** 5.3305
  1. T

  2. *

    p<.05.

  3. **

    p<.01.

  4. ***

    p<.001.

  5. Source: Authors’ computations on SHARE data, wave 2004.

Table 4
Two-step estimation for intergenerational receiving without Heckman correction.
Recipient side
N=29,652 Logit Probability of being Recipient N= 1,872 OLS ln{Amount}
B t B Se
In(af parents) 0.169 *** 0.061 In(af parents) 0.0892 *** 0.0079
age −0.0883 *** 0.052 age 0.0253 * 0.0147
age² 0.0007 *** 0.0543 age² −0.0004 * 0.0002
married 0.3004 ** 0.0531 grandchildren −0.1051 * 0.0567
single 0.6497 *** 0.0531 married 0.1911 *** 0.0494
divorced 0.6462 *** 0.0625 Italy 0.2481 ** 0.0944
in work −0.2689 *** 0.1205 _intercept 7.028 *** 0.2699
degree 0.3421 *** 0.0463
grandchildren 0.2863 *** 0.0502
Italy 0.1984 ** 0.0747
_intercept −1.3815 *** 0.8158
  1. T

  2. *

    p<.05.

  3. **

    p<.01.

  4. ***

    p<.001.

  5. Source: Authors’ computations on SHARE data, wave 2004.

Table 5
Cumulated contributions to wealth Gini variation, LC vs. NS simulation, 2008–2050 (in percent).
W0 Capgains S ig_tr ESA d.gini
1.LC approach 0.146 −3.918 −0.511 6.757 −1.958 0.516
2.NS approach 0.128 −4.522 6.754 2.979 −1.705 3.634
(1)– (2) −0.018 −0.604 7.264 −3.778 0.253 3.118
  1. Source: Authors’ computations on simulated data.

Table 6
Cumulated contributions to disposable income Gini variation, LC approach, different returns scenarios, 2008–2050 (in percent).
After_tax pensions After-tax earnings Rents on real estate net of liabilities Interests on financial wealth d.gini avg r-g
2.low returns 5.55 −1.42 2.50 3.51 10.13 0.13
1.Benchmark 5.28 −6.69 7.57 4.92 11.08 0.61
3.High returns 4.79 −14.70 16.89 6.89 13.88 1.28
(3)-(2) −0.76 −13.28 14.40 3.39 3.75 1.15
  1. Source: Authors’ computations on simulated data.

Table 7
Cumulated variation in incomes shares (in percent).
Sources 2008 2050 2050–2008 2008 2050 2050–2008 2008 2050 (2050)-(2008)
After-tax earnings 51.0 43.8 −7.2 51.4 46.2 −5.2 50.7 40.0 −10.7
After-tax pensions 29.7 29.7 29.9 31.3 1.5 29.5 27.2 −2.3
Rents on real estate net of negative interests 14.6 18.3 3.7 14.1 15.1 1.1 15.2 23.7 8.6
Interests on financial wealth 4.7 8.2 3.4 4.7 7.4 2.7 4.7 9.1 4.4
  1. Source: Authors’ computations on simulated data.

Table A1
Table A1 Exogenous parameters (per year).
Low returns scenario Benchmark returns scenario High returns scenario
Productivity Productivity Productivity
Same as benchmark G (average earnings growth) Same as benchmark
0.88% (2008–2009)
1.00% (2010–2013)
1.20% (2014–2019)
1.90% (2020–2029)
2.00% (2030–2050)
Capital gains Capital gains Capital gains
rh ~N µ=0.75%; sd=8% rh ~N µ= 1.5%; sd= 8% rh ~N µ=2.5%; sd=8%
rf ~N µ=1.5%; sd=18%; rf ~N µ=3%; sd=18%; rf ~N µ=5%; sd=18%;
kurt = 2.4% kurt=2.4% kurt=2.4%
resa=0.9% resa=0.9% resa=0.9%
Interests and rents Interests and rents Interests and rents
Same as benchmark rm ~N µ=3%; sd= 0.5% Same as benchmark
home equity annual rent: 3.5%
real interest rate on non-risky AF: 1%
real interest rate on risky AF: 3%

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)