1. Transport
Download icon

The quantitative and qualitative evaluation of a multi-agent microsimulation model for subway carriage design

  1. Le-le Cao  Is a corresponding author
  2. Xiao-xue Li  Is a corresponding author
  3. Fen-ni Kang  Is a corresponding author
  4. Chang Liu  Is a corresponding author
  5. Fu-chun Sun  Is a corresponding author
  6. Ramamohanarao Kotagiri  Is a corresponding author
  1. Tsinghua University, China
  2. The University of Melbourne, Australia
  3. Shanghai University of Finance and Economics, China
  4. Lab MAS, France
Research article
Cite this article as: L. Cao, X. Li, F. Kang, C. Liu, F. Sun, R. Kotagiri; 2015; The quantitative and qualitative evaluation of a multi-agent microsimulation model for subway carriage design; International Journal of Microsimulation; 8(3); 6-40. doi: 10.34196/ijm.00120
17 figures and 3 tables

Figures

The essential components and concepts of a typical multi-agent microsimulation model.
The interior layout and exterior appearance of the SL Bombardier C20 subway carriage.
The manual zone partition (No. 1 ∼ 19) of the focused part of an SL C20 carriage.
The measurements of the simulated environment space E and the agent attributes p, q.
An calculation example of dynamic comfort distance qn(t): auto-adaptation according to Nt.
Illustration of agent turning angle that is selected obeying a discrete Gaussian distribution.
The heterogeneous agent moving speeds are mapped to groups of Swedish population.
The observation/simulation time (blue line) and the corresponding cubic interpolations (3D surface) as a function of existing and entering passengers/agents.

Data source: Table 1 and 2.

The structure of a typical ELM network with one hidden layer (with L nodes), one input layer (with 23 nodes), and one output layer (with 10 nodes representing 10 categories).
The evaluation results obtained via an unified multinomial classifier: (a) the performance sensitivity obtained via grid searching; (b) the class-wise confusion matrix of prediction accuracy.
The quantitative evaluation results using receiver operating characteristics (ROC) graph:
A screen-shot of “left-right sub-carriage imbalance” in the SL C20 subway carriage.
A screen-shot of “doorway jam” phenomenon in the SL C20 subway carriage.
A new design of seat layout by emptying wall areas in the SL C20 subway carriage.
An example of “pivot blocking” in the SL C20 carriage with the new seat distribution.
The “left-right sub-carriage imbalance” problem caused by “vertical detour difficulty”.

Tables

Table 1

Real data collected from in-field observation.

di Initial Status (entering|existing passengers) Real-data Dimensions (i.e. di,1, di,2,…, di,23)
d1 17-01,19-03|16:1,17:2,18:1,19:1 1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,2,1,08,0,1,0
d2 17-03,19-00|14:1,16:3,17:2,18:2,19:4 0,1,0,0,0,0,0,0,0,0,0,0,0,2,1,1,2,4,4,12,4,3,0
d3 16-01,18-03|9:1,14:3,15:3,16:4,17:3,18:2,19:2 1,1,1,0,0,0,0,0,1,0,0,0,0,3,3,2,4,3,3,18,1,1,0
d4 16-02,18-05|1:1,14:3,15:3,16:4,17:2,18:4,19:3 3,2,3,0,0,0,0,0,0,0,0,0,0,4,4,3,3,2,3,20,3,1,1
d5 16-07,18-05|1:1,2:2,14:3,15:2,16:5,17:5,18:5,19:3 4,2,3,0,0,1,0,0,0,0,0,0,0,5,7,4,2,6,4,31,6,3,2
d6 17-09,19-08|1:2,2:4,14:2,15:2,16:7,17:3,18:4,19:4 3,3,2,0,0,1,1,0,0,0,1,0,0,6,7,6,5,4,6,28,3,1,1
d7 16-10,18-06|1:4,3:1,4:1,7:1,14:4,15:2,16:5,17:4,18:4,19:4 3,2,2,0,0,0,1,0,0,0,0,0,0,5,9,7,6,4,7,30,7,4,3
d8 17-08,19-10|1:2,2:2,3:2,4:1,8:1,14:2,15:2,16:5,17:2,18:6,19:5 4,4,3,1,0,0,0,1,0,0,0,0,0,5,8,3,8,7,4,35,0,3,5
d9 17-11,19-13|1:2,2:2,3:1,6:1,8:1,14:3,15:3,16:4,17:3,18:2,19:3 2,4,2,0,1,0,0,0,1,1,0,0,0,6,8,6,5,5,8,40,3,3,4
d10 16-10,18-11|1:3,2:4,3:2,6:1,7:1,10:1,14:5,15:4,16:5,17:4,18:4,19:5 4,6,3,0,0,1,1,1,0,1,0,0,0,8,9,8,7,5,6,46,4,6,5
Table 2

Partial simulation data samples generated from 100 valid micro-model executions.

d^i Model Initialization (entering|existing agents) Features of Simulation Data (d^i,1,,d^i,23)
d^1 17–01,19–03|16:1,17:2,18:1,19:1 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,3,1,05,00,1,1
d^2 17–01,19–03|16:1,17:2,18:1,19:1 1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,3,10,00,0,4
d^3 17–01,19–03|16:1,17:2,18:1,19:1 1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,3,1,1,1,13,00,2,3
d^4 17–01,19–03|16:1,17:2,18:1,19:1 1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,18,04,4,4
d^5 17–01,19–03|16:1,17:2,18:1,19:1 1,0,2,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,10,02,3,5
d^6 17–01,19–03|16:1,17:2,18:1,19:1 1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,09,03,3,4
d^7 17–01,19–03|16:1,17:2,18:1,19:1 1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,10,02,2,4
d^8 17–01,19–03|16:1,17:2,18:1,19:1 1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,3,08,01,1,3
d^9 17–01,19–03|16:1,17:2,18:1,19:1 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,1,05,00,1,2
d^10 17–01,19–03|16:1,17:2,18:1,19:1 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,3,07,00,1,1
d^20 17–03,19–00|14:1,16:3,17:2,18:2,19:4 1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,3,4,2,2,23,05,5,0
d^30 16–01,18–03|9:1,14:3,15:3,16:4,17:3,18:2,19:2 1,1,1,0,1,0,0,0,0,0,0,0,1,1,2,5,1,4,4,27,02,3,1
d^40 16–02,18–05|1:1,14:3,15:3,16:4,17:2,18:4,19:3 3,2,2,0,0,1,0,0,0,0,0,1,0,4,4,2,3,2,3,43,05,1,1
d^50 16–07,18–05|1:1,2:2,14:3,15:2,16:5,17:5,18:5,19:3 3,3,2,0,0,1,0,0,1,0,1,0,1,5,5,4,3,6,3,46,07,2,2
d^60 17–09,19–08|1:2,2:4,14:2,15:2,16:7,17:3,18:4,19:4 4,2,3,0,1,2,0,0,0,1,0,0,0,6,5,7,5,6,3,47,05,2,1
d^70 16–10,18–06|1:4,3:1,4:1,7:1,14:4,15:2,16:5,17:4,18:4,19:4 3,1,2,1,0,1,0,1,0,1,0,0,0,4,7,8,6,5,6,52,10,3,4
d^80 17–08,19–10|1:2,2:2,3:2,4:1,8:1,14:2,15:2,16:5,17:2,18:6,19:5 3,5,3,0,2,0,1,0,0,1,0,0,1,5,6,4,6,6,5,56,01,3,5
d^90 17–11,19–13|1:2,2:2,3:1,6:1,8:1,14:3,15:3,16:4,17:3,18:2,19:3 2,5,3,0,0,1,1,0,1,0,0,1,1,7,5,6,5,5,6,63,04,2,4
d^100 16–10,18–111:3,2:4,3:2,6:1,7:1,10:1,14:5,15:4,16:5,17:4,18:4,19:5 5,6,2,0,2,1,1,0,1,0,1,0,1,7,7,8,6,6,6,69,04,5,5
Table 3

Parameters and measures of 10 one-vs.-rest binary classifiers (200 trials); the scores labeled with bold, asterisk, and underline represent the best, 2nd best, and the worst results respectively.

Parameters & Measures Class. k=1 Class. k=2 Class. k=3 Class. k=4 Class. k=5 Class. k=6 Class. k=7 Class. k=8 Class. k=9 Class. k=10 Mean
Lk 103 102 500 103 2,000 200 200 103 50 500 N/A
Ck (baseline) 106 103 102 103 103 102 102 1 10 102 N/A
Mean Acc. 0.879 0.916 0.897 0.996∗ 0.991 0.906 0.992 0.998 0.872 0.996∗ 0.944
Dev. 0.074 0.036 0.015∗ 0.021 0.029 0.037 0.027 0.012 0.074 0.02 0.034
Precision 0.852 1 0.1 1 0.942 0.643 1 0.985∗ 0.291 1 0.781
Recall 0.799 0.16 0.005 0.965 0.97∗ 0.135 0.92 1 0.195 0.955 0.61

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)