1. Labour supply and demand
Download icon

The ‘German Job Miracle’ and Its Impact on Income Inequality: A Decomposition Study

  1. Jannek Mühlhan  Is a corresponding author
  1. Federal Statistical Office Germany (Destatis) Gustav-Stresemann-Ring, Germany
Research article
Cite this article as: J. Mühlhan; 2023; The ‘German Job Miracle’ and Its Impact on Income Inequality: A Decomposition Study; International Journal of Microsimulation; 16(1); 28-64. doi: 10.34196/ijm.00274
6 figures and 18 tables

Figures

Trends in inequality and employment in Germany. Note: Inequality of equivalized disposable household income. Employment numbers includes the full population and self-employment.Source: SOEP v32.1; author’s own presentation.
Kernel density estimate of log hourly wages for 2004 and 2015. Source: IAB-MSM; author’s own presentation.
Simulated kernel density estimate of log hourly wages. Source: IAB-MSM; author’s own presentation.
Simulated employment changes per income decile and effect type. Note: The columns represent the employment change per households’ disposable income decile from first (left) to tenth (right) decile. Source: IAB-MSM; author’s own presentation.
Decomposition of change in Gini-coefficient. Note: The triangles mark the Shorrocks-Shapley Value of each effect. Each circle represents one different decomposition.Source: IAB-MSM; author’s own presentation.
Effect heterogeneity. Note: The effect changes are estimated on all 64 possible counterfactual distributions. The constant describes the average effect size when measured at the base period situation.Source: IAB-MSM; author’s own presentation.

Tables

Table 1
Simulated employment changes per working hour category
Employment change in 1000Working hour categoryFTE
Partial effect0101520304050
Base periodMen2,073422612528111,3122,10514,237
Women5,3751,2286642,2032,0746,58156110,496
Total7,4481,2706902,3282,35517,8932,66724,734
Indirect policyMen-−175-−18−1−5−3+126+75+210
Women-−186-−56-−20-−3+35+198+33+242
Total-−361-−74-−21-−8+32+324+107+452
Indirect wageMen+124+11+6+8+2−84−66−156
Women+154+26+12-−10-−34-−121-−26-−174
Total+278+36+18−2−32−206−92−330
PreferenceMen+156+32+27+46+115−480+105-−223
Women-−490-−12+15+155+749−703+285+296
Total-−334+20+43+201+864−1183+390+73
RestrictionMen-−789+22+22+35+60+574+75+744
Women-−431+42+34+90+125+130+10+304
Total-−1220+65+56+126+186+704+84+1049
PopulationMen+66−20−12−41−91−320+106-−286
Women−655−269+26−361+146+873+99+869
Total−589−289+14−402+56+553+204+582
Total changesMen-−617+27+42+43+84−185+294+289
Women−1,609−269+67−128+1,022+377+400+1,537
Total−2,226−242+109-−85+1,105+192+694+1,826
  1. Note: FTE = Full-time equivalent.

  2. Source: IAB-MSM; author’s own calculation.

Table 2
Population changes
20042015
Household characteristics
Household type
 Singles39.69%46.39%
 Single parents9.20%10.05%
 Couples without children28.42%27.06%
 Couples with children22.70%16.50%
Household size
 1 person38.30%41.88%
 2 persons33.81%34.05%
 3 persons14.38%13.97%
 4 persons9.98%7.73%
 5 or more persons3.53%2.37%
Individual characteristics
Age
 0 - 16 years17.50%15.34%
 17 - 65 years63.42%62.62%
 > 65 years19.08%22.04%
Nationality (of adults)
 German92.40%90.90%
 Other7.60%9.10%
Educational degree (25 - 65 years)
 Low degree37.25%25.66%
 Medium degree39.78%43.50%
 High degree22.97%30.84%
Vocational degree (25 - 65 years)
 Vocational degree86.28%85.85%
 No vocational degree13.72%14.15%
Employment status (25 - 65 years)
 Blue collar23.36%17.92%
 White collar35.66%48.42%
 Self-employed6.56%6.03%
 Civil servant4.45%4.81%
 Not employed29.29%21.58%
 Other0.68%1.24%
  1. IAB-MSM = author’s own calculation;

  2. Note: Population shares after household selection with adjusted SOEP weights.

Table 3
Decomposition results: Percentage change in inequality of gross household income from employment
Inequality change
Partial effectGiniAtkinsonP90/P10P90/P50P50/P10
Indirect policy-1.14%-1.27%-2.81%-0.64%-1.95%
Wage+2.56%+7.47%+7.79%+2.64%+4.72%
Indirect wage+1.27%+0.61%+1.27%+0.32%+0.86%
Preference+0.76%+5.73%+8.95%+2.14%+6.38%
Restriction-4.33%-0.22%-0.27%-0.39%+0.11%
Population+2.89%+5.21%+3.94%+5.18%-1.31%
Total employment-3.44%+4.85%+7.14%1.43%+5.40%
Total change+2.01%+17.52%+18.88%+9.25%+8.81%
  1. Note: Inflexible households are excluded. For Atkinson and percentile ratios households without income from employment are excluded.

  2. The five columns present the Shorrock-Shapley value of the change in inequality measured with the Gini-coefficient, the Atkinson-index with inequality aversion parameter ∈ = 0.5, and the ratios between the 90th and 10th, the 90th and 50th, and the 50th and 10th income percentiles in percent.

  3. Source: IAB-MSM; author’s own calculation.

Table 4
Decomposition results: Percentage change in inequality of disposable household income
Inequality change
Partial effectGiniAtkinsonP90/P10P90/P50P50/P10
Policy-2.30%-2.91%-3.33%-2.39%-1.07%
Indirect policy-0.57%-1.46%-0.47%+0.01%-0.47%
Wage+0.04%+0.16%+0.00%+0.00%+0.00%
Indirect wage+0.38%+0.65%-0.06%-0.01%-0.05%
Preference+0.65+0.32%-1.42%-0.01%-1.41%
Restriction-1.84%-3.72%+0.10%-0.02%+0.11%
Population+6.31%+6.47%+8.27%+4.66%+3.80%
Growth-0.34%-0.97%-4.70%-0.47%-4.25%
Total employment-1.38%-4.21%-1.85%-0.03%-1.81%
Total change+2.33%-1.46%-1.62%+1.78%-3.34%
  1. Note: The five columns present the Shorrock-Shapley value of the change in inequality measured with the Gini-coefficient, the Atkinson-index with inequality aversion parameter ∈ = 0.5, and the ratios between the 90th and 10th, the 90th and 50th, and the 50th and 10th income percentiles.

  2. Source: IAB-MSM; author’s own calculation.

Table A1
Household selection
Selection step20042015
NΔNΔ
Initial number of private households in GSOEP11,795(-)15,996(-)
Exclusion of households without interviewed head of HH and/or partner11,7217415,95244
Exclusion of couple households with survey non-response of partner11,06765414,0512,126
Households interviewed in the simulation year and the following year9,9051,16211,6141,433
Exclusion of households with missing information on worked hours, wages and other income variables9,1129728,9493,972
Excluded households7281,945
Households considered for income simulation9,11210,594
Households considered for inequality analysis11,06714,051
  1. Note: N = remaining number of households, Δ = change in numbers of households in the respective selection step. Exclusions are overestimated, if one simply counts the households affected by a certain condition, since households may be affected more than once.

  2. Source: IAB-MSM; author’s own presentation.

Table A2
Components of net household income in the IAB-MSM
Model stageIncome componentsDetermined in tax and transfer module?
1Earned incomeno
+Self-employed incomeno
+Capital incomeno
+Rental incomeno
+Other income sources (pensions)no
2-Social security contributionsyes
-Income taxyes
-Alimony paymentsyes
3+Child benefityes
+Child-raising allowanceyes
+Unemployment benefitsyes
+Federal student support, stipends, claims to maintenance, widow’s allowance, maternity allowance, reduced hours compensationno
4+Housing allowanceyes
+Supplementary child allowanceyes
+Social assistance for employable persons (SGB II)yes
+Social assistance for unemployable persons (SGB XII)yes
=Net household incomeyes
Table A3
Policy parameter
Policy parameter2004αρ20042015
Benefits
Unemployment Benefit (share of previous net income)60% (67%)*60% (67%)*
Unemployment Assistance (share of previous net income)53% (57%)*
Social Assistance291€*̂*349€404€
Unemployment Benefit II404€
Income tax
Marginal tax burden in 1st progressive zone16% - 24.05%14% - 23.97%
Marginal tax burden in 2nd progressive zone24.05% - 45%23.97% - 42%
Marginal burden in 1st linear zone45%42%
Marginal burden in 2nd linear zone (rich tax)45%
Basic tax allowance7,664€9,187€8,472€
Lower threshold of 2nd progressive zone12,739€15,271€13, 469€
Lower threshold of 1st linear zone52,151€62,515€52,881€
Lower threshold of 2nd linear zone (rich tax)250,730€
Social security contributions
Contributions to statutory pension insurance19.5%18.7%
Contributions to statutory unemployment insurance6.5%3.0%
Contributions to statutory health insurance14.2%15.5%
Contributions to statutory long-term care insurance1.7%2.6% (2.35%)*
Upper threshold of marginal employment (SSC free jobs)400€479€450€
Upper threshold of contributions to statutory pension insurance5,150€ (4,350€)*̂**6,173€ (5,214€)*̂**6,700€ (6,150€)*̂**
Upper threshold of contributions to statutory unemployment insurance5,150€ (4,350€)*̂**6,173€ (5,214€)*̂**6,700€ (6,150€)*̂**
Upper threshold of contributions to statutory health insurance3,488€4,181€4,125€
Upper threshold of contributions to statutory long-term care insurance3,488€4.181€4,125€
  1. Note: The Table includes only the most important policy parameter. Uprating parameter α is set to 1.1987 according to consumer price inflation between 2004 and 2015.

  2. ∗ with children.

  3. ∗∗ unweighted average over all federal states.

  4. ∗∗∗East Germany.

  5. Source: IAB-MSM; author’s own presentation.

Table A4
Estimation results for wage equation of men in East Germany
20042015
bsebse
Log hourly wages
Years in education0.0603***(0.0068)0.0951***(0.0055)
Full-time-0.0157*(0.0061)0.0011(0.0041)
Part-time-0.0228**(0.0084)-0.0060(0.0062)
Human capital dep.-0.2667***(0.0627)-0.0622(0.0654)
Human capital dep. sq.0.0691***(0.0209)-0.0438(0.0318)
Tenure0.0116*(0.0048)0.0198***(0.0039)
Tenure sq.-0.0180(0.0121)-0.0216(0.0112)
Age0.1133*(0.0496)0.0444(0.0510)
Age sq.-0.2132(0.1186)-0.0576(0.1219)
Age cub.0.1496(0.0920)0.0065(0.0931)
Married0.0812*(0.0382)0.0693*(0.0319)
Separated0.1510*(0.0733)0.0363(0.0969)
Divorced0.0744(0.0478)0.0561(0.0484)
Children 0-3-0.0035(0.0443)-0.0413(0.0386)
Children 4-60.0346(0.0502)0.0618*(0.0315)
Berlin0.1924***(0.0401)0.0841**(0.0326)
Constant-0.1285(0.6634)0.3731(0.6789)
Selection
Low education0.4902(0.6294)0.6708(0.5615)
Medium education0.8935(0.6048)0.4006(0.4904)
High education-1.1962(0.6265)-0.5408(0.5210)
Vocational degree1.1709*(0.5873)0.8428(0.4529)
University degree1.6311**(0.5976)0.4673(0.4678)
Experience0.0468*(0.0192)-0.0093(0.0139)
Human capital dep.-1.9419***(0.1342)-1.5065***(0.1313)
Human capital dep. sq.0.2821***(0.0338)0.1424***(0.0327)
Age 26-300.3566(0.2406)1.0566***(0.2412)
Age 31-350.3749(0.2898)1.0539***(0.2741)
Age 36-400.0762(0.3671)1.4974***(0.2935)
Age 41-55-0.2919(0.4088)1.5560***(0.3563)
Age 46-50-0.3446(0.5127)1.5454***(0.3789)
Age 51-55-0.3164(0.5918)1.5913***(0.4496)
Age 56-60-1.2568(0.6874)1.6276**(0.5054)
Age 61-65-2.1426**(0.8132)0.4614(0.5823)
Married0.0600(0.1564)0.2883*(0.1353)
Separated-0.3616(0.2619)-0.3547(0.2593)
Divorced-0.3332(0.2135)-0.2595(0.2101)
Children 0-30.2660(0.2056)0.1530(0.1789)
Children 4-60.3129(0.2041)0.0436(0.1529)
kind160.1424(0.1390)0.1742(0.1301)
kind170.0792(0.2264)-0.2543(0.2935)
Disability0.0049(0.0035)-0.0069(0.0035)
Other income-0.8729***(0.1037)-0.4768***(0.0610)
Other income sq.0.8984***(0.1605)0.2678***(0.0457)
Constant0.8389(0.5615)0.5111(0.4932)
Rho-0.4362***(0.1301)0.1927*(0.0843)
Sigma-0.9927***(0.0345)-1.0116***(0.0267)
N  1621  1588
Log-likelihood  -807.4515  -843.6526
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A5
Estimation results for wage equation of men in West Germany
20042015
bsebse
Log hourly wages
Years in education0.0516***(0.0082)0.0824***(0.0062)
Full-time-0.0045(0.0023)-0.0010(0.0020)
Part-time-0.0204***(0.0054)-0.0271***(0.0033)
Human capital dep.-0.2090***(0.0380)-0.1243**(0.0396)
Human capital dep. sq.0.0341(0.0189)-0.0002(0.0224)
Tenure0.0158***(0.0020)0.0165***(0.0019)
Tenure sq.-0.0258***(0.0054)-0.0131**(0.0049)
German-0.1633(0.0895)0.1170(0.0706)
Years in edu. x German0.0144(0.0082)-0.0020(0.0062)
Age0.0766**(0.0252)0.0283(0.0237)
Age sq.-0.1281*(0.0610)-0.0137(0.0570)
Age cub.0.0806(0.0477)-0.0214(0.0444)
Married0.0512**(0.0181)0.0757***(0.0171)
Separated0.0369(0.0399)-0.0251(0.0399)
Divorced-0.0340(0.0304)0.0618*(0.0253)
Children 0-30.0447*(0.0188)0.0340*(0.0159)
Children 4-60.0796***(0.0186)0.0320*(0.0146)
Constant0.6172(0.3467)0.8913**(0.3218)
Selection
Low education0.5609**(0.2122)0.6813***(0.1914)
Medium education0.4134*(0.2057)0.0442(0.1637)
High education-0.5462**(0.2068)-0.6239***(0.1869)
Vocational degree0.7051***(0.1706)0.7336***(0.1527)
University degree1.3824***(0.1978)0.6433***(0.1640)
Experience0.0302**(0.0101)0.0121(0.0074)
Human capital dep.-1.4975***(0.0888)-1.0907***(0.0744)
Human capital dep. sq.0.1654***(0.0246)0.0543**(0.0210)
Age 26-300.3408*(0.1358)0.3479**(0.1181)
Age 31-350.5568**(0.1722)0.7908***(0.1389)
Age 36-400.7194***(0.1937)0.7753***(0.1624)
Age 41-450.5321*(0.2516)0.7208***(0.1887)
Age 46-500.3618(0.2857)0.7677***(0.2094)
Age 51-550.0793(0.3233)0.8887***(0.2432)
Age 56-60-0.5898(0.3684)0.3145(0.2805)
Age 61-65-1.6890***(0.4238)-0.6393*(0.3148)
Married0.0462(0.1074)0.2685**(0.0853)
Separated0.0636(0.2106)0.0794(0.1974)
Divorced-0.2688(0.1496)0.1803(0.1256)
Children 0-30.3631*(0.1471)-0.1461(0.0924)
Children 4-60.1316(0.1381)0.0574(0.0886)
kind16-0.0639(0.0828)0.1688*(0.0703)
kind170.0076(0.1635)0.0538(0.1412)
Disability-0.0046*(0.0019)-0.0058***(0.0016)
Other income-0.3942***(0.0286)-0.5168***(0.0509)
Other income sq.0.0869***(0.0066)0.2913***(0.0769)
Constant0.6765***(0.1891)0.8362***(0.1782)
Rho-0.1286(0.0693)0.0578(0.0559)
Sigma-1.1161***(0.0157)-1.0366***(0.0165)
N   4440   5674
Log-likelihood   -1.93e+03   -3.03e+03
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A6
Estimation results for wage equation of women in East Germany
20042015
bsebse
Log hourly wages
Years in education0.0776***(0.0055)0.0816***(0.0044)
Full-time-0.0062(0.0046)0.0043(0.0030)
Part-time-0.0116*(0.0053)-0.0002(0.0033)
Human capital dep.-0.1117(0.0570)-0.0861(0.0486)
Human capital dep. sq.0.0041(0.0171)-0.0000(0.0179)
Tenure0.0266***(0.0049)0.0151***(0.0036)
Tenure sq.-0.0330*(0.0133)-0.0046(0.0094)
Age0.0325(0.0498)0.0942*(0.0437)
Age sq.-0.0074(0.1241)-0.1803(0.1032)
Age cub.-0.0323(0.0990)0.1053(0.0785)
Married0.0314(0.0324)0.0153(0.0236)
Separated-0.0125(0.0838)0.0293(0.0519)
Divorced-0.0790(0.0450)0.0311(0.0341)
Children 0-30.0754(0.0630)0.1327**(0.0470)
Children 4-60.1813***(0.0472)0.0507(0.0313)
Berlin0.1605***(0.0357)0.1279***(0.0242)
Constant0.3610(0.6300)-0.2300(0.5868)
Selection
Low education6.2022(.)1.0227*(0.4361)
Medium education6.8002***(0.3552)-0.0080(0.4148)
High education6.0726***(0.3613)-0.5879(0.4379)
Vocational degree7.3540***(0.2934)0.6630(0.3758)
University degree7.4677***(0.3056)0.7411(0.3820)
Experience0.0340*(0.0144)0.0434***(0.0101)
Human capital dep.-1.2067***(0.1292)-0.8093***(0.1110)
Human capital dep. sq.0.0661(0.0352)0.0066(0.0264)
Age 26-300.3526(0.1868)0.3127(0.2054)
Age 31-350.6714**(0.2449)0.7782***(0.2280)
Age 36-400.5558(0.2955)0.5030*(0.2469)
Age 41-450.4479(0.3256)0.7872**(0.2815)
Age 46-500.2952(0.4109)0.0829(0.2946)
Age 51-550.0616(0.4571)0.1606(0.3385)
Age 56-60-0.2991(0.5244)-0.4119(0.3885)
Age 61-65-1.7425**(0.6272)-1.8400***(0.4396)
Married0.2471(0.1456)0.3586***(0.1065)
Separated-0.0537(0.3317)0.5252*(0.2443)
Divorced-0.1005(0.2036)0.0039(0.1545)
Children 0-3-0.4611*(0.1800)-0.6359***(0.1314)
Children 4-60.7355***(0.1640)0.5462***(0.1309)
Children 7-160.2113(0.1305)0.2881**(0.1075)
Children 17-180.0907(0.1894)0.1543(0.2345)
Disability-0.0046(0.0037)-0.0091**(0.0028)
Other income-0.6274***(0.0921)-0.5656***(0.0694)
Other income sq.0.6135***(0.1433)0.4503***(0.0966)
Constant-5.9186***(0.3300)0.4937(0.3798)
Rho-0.0159(0.1403)0.0038(0.0921)
Sigma-1.0508***(0.0291)-1.0927***(0.0304)
N18312025
Log-likelihood-845.8183-1.01e+03
  1. * p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A7
Estimation results for wage equation of women in West Germany
20042015
bsebse
Log hourly wages
Years in education0.0748***(0.0086)0.0759***(0.0068)
Full-time0.0032(0.0017)0.0023(0.0013)
Part-time-0.0044(0.0023)-0.0051**(0.0016)
Human capital dep.-0.0325(0.0245)-0.0495**(0.0191)
Human capital dep. sq.-0.0005(0.0087)0.0015(0.0064)
Tenure0.0190***(0.0025)0.0248***(0.0019)
Tenure sq.-0.0241**(0.0074)-0.0323***(0.0054)
German0.0402(0.0983)0.0571(0.0863)
Years in edu. x German-0.0016(0.0090)0.0017(0.0071)
Age0.0243(0.0283)0.0502*(0.0231)
Age sq.0.0042(0.0703)-0.0770(0.0550)
Age cub.-0.0443(0.0560)0.0314(0.0425)
Married-0.0285(0.0198)-0.0277(0.0152)
Separated-0.0222(0.0437)-0.0155(0.0328)
Divorced0.0309(0.0257)-0.0379*(0.0190)
Children 0-30.1029(0.0549)0.0688*(0.0312)
Children 4-60.0208(0.0342)0.0695***(0.0201)
Constant0.7980*(0.3768)0.5628(0.3134)
Selection
Low education0.5297**(0.1804)0.2108(0.1681)
Medium education0.4186*(0.1849)0.2049(0.1613)
High education-0.7122***(0.2003)-0.2802(0.1752)
Vocational degree0.7217***(0.1611)0.7066***(0.1493)
University degree0.9938***(0.1712)0.8390***(0.1536)
Experience0.0042(0.0049)0.0016(0.0038)
Human capital dep.-0.6856***(0.0596)-0.2717***(0.0478)
Human capital dep. sq.-0.0253(0.0134)-0.0944***(0.0113)
Age 26-300.6996***(0.1126)0.3663***(0.0934)
Age 31-350.9727***(0.1226)0.7185***(0.1020)
Age 36-401.0663***(0.1299)0.8993***(0.1099)
Age 41-451.0626***(0.1443)1.1341***(0.1146)
Age 46-500.9881***(0.1550)1.1266***(0.1224)
Age 51-550.7691***(0.1673)1.0450***(0.1322)
Age 56-600.6069***(0.1794)0.8570***(0.1478)
Age 61-65-0.4658*(0.2170)0.0948(0.1695)
Married0.1655*(0.0789)-0.0021(0.0570)
Separated-0.0561(0.1660)-0.1495(0.1205)
Divorced0.0004(0.1039)-0.0265(0.0743)
Children 0-3-1.2915***(0.1023)-0.9322***(0.0664)
Children 4-60.2875**(0.0877)0.3254***(0.0614)
Children 7-160.1757**(0.0678)0.1959***(0.0481)
Children 17-180.0045(0.1277)-0.1579(0.0822)
Disability-0.0087***(0.0019)-0.0085***(0.0012)
Other income-0.1455***(0.0184)-0.2526***(0.0236)
Other income sq.0.0160***(0.0021)0.1365***(0.0234)
Constant0.0767(0.1681)0.1098(0.1603)
Rho-0.0639(0.0879)0.0917(0.0695)
Sigma-1.0406***(0.0215)-1.0411***(0.0151)
N  5078  7259
Log-likelohood  -2.73e+03  -4.47e+03
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A8
Estimation results for the unemployment probabilities
20042015
WomenMenWomenMen
Regional unemployment rate0.0593***0.0320***0.0822***0.0616***
(0.0079)(0.0063)(0.0140)(0.0136)
Age-0.0740***0.0025-0.0783***-0.0527***
(0.0062)(0.0073)(0.0069)(0.0082)
Age sq.0.0008***0.00000.0008***0.0007***
(0.0001)(0.0001)(0.0001)(0.0001)
Nationality
 GermanReference
 OECD0.26400.06430.1651-0.2239
(0.1917)(0.1842)(0.1697)(0.2154)
 Other0.34030.25390.3372**-0.0879
(0.1737)(0.1625)(0.1060)(0.1513)
Educational degree
 Low degreeReference
 Medium degree-0.2089*-0.2914***-0.2340**-0.2797**
(0.0917)(0.0835)(0.0824)(0.0894)
 High degree-0.5648***-0.8269***-0.4637***-0.4932***
(0.1348)(0.1283)(0.1107)(0.1166)
No vocational degree0.10270.18060.2892***0.2042
(0.1002)(0.1414)(0.0846)(0.1060)
Previous employment
 Employed in t-1-1.2011***-1.8202***-0.4772**-1.3053***
(0.1714)(0.1030)(0.1663)(0.2121)
 Employed in t-20.0593-0.1668-0.5057**-0.2350
(0.1621)(0.1108)(0.1766)(0.1904)
 Employed in t-30.0480-0.3755***-0.0785-0.0751
(0.1191)(0.1075)(0.1741)(0.1368)
N  3446  3659  4288  4108
Pseudolikelihood  -788.5288  -536.3061  -787.5285  -563.0143
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Note: t statistics in parentheses.

  3. Source: IAB-MSM; author’s own presentation.

Table A9
Estimation results for the labor supply preferences of single men
20042015
Coef.s.e.Coef.s.e.
Consumption-0.6219(1.4808)7.9233**(2.8858)
Consumption sq.-0.04069(0.0555)0.1869**(0.0707)
Consumption x Leisure0.09482(0.3565)-1.4357*(0.7193)
Leisure92.545***(11.0540)85.453***(10.1909)
Leisure sq.-12.247***(1.4535)-9.8510***(1.3204)
Leisure x
 High education-0.6056(0.5755)-0.4818(0.4998)
 Low education1.8243**(0.5659)0.5176(0.4642)
 East Germany1.3023**(0.4798)0.2647(0.3847)
 German nationality0.3709(1.1765)0.5161(0.4825)
 Age-0.6355(1.7146)-3.9675***(1.0906)
 Age sq.12.437(20.4404)48.661***(12.6555)
Fixed costs of work3.9099***(0.6724)3.5089***(0.4943)
Fixed costs of full-time-3.1132***(0.3355)-3.2498***(0.3006)
N602724
Log-likelihood-502.42-675.89
UC§lt;00.96680.02999
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 .

  2. Source: IAB-MSM; author’s own presentation.

Table A10
Estimation results for the labor supply preferences of single women
20042015
Coef.s.e.Coef.s.e.
Consumption0.5100(0.8057)3.2805*(1.5159)
Consumption sq.0.1637**(0.0568)0.2923*(0.1191)
Consumption x Leisure0.1027(0.1974)-0.08498(0.3837)
Leisure 113.22***(8.8914)89.797***(6.4361)
Leisure sq. -13.687***(1.0840)-11.075***(0.8002)
Leisure x
 High education-0.9524(0.5770)-0.4796(0.3976)
 Low education0.5652(0.5740)0.8085(0.4143)
 East Germany0.3233(0.5053)0.2691(0.3548)
 German nationality0.9445(0.9306)-1.1898**(0.4508)
 Age-5.1194***(1.4995)-2.0370(1.0574)
 Age sq.74.421***(17.8229)34.874**(11.9136)
Fixed costs of work2.8597***(0.4106)3.2088***(0.2792)
Fixed costs of full-time-2.4068***(0.2324)-1.4462***(0.1557)
N 525 862
Log-likelihood -564.09  -1125.8
UC§lt;00.034010.01226
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A11
Estimation results for the labor supply preferences of single parents
20042015
Coef.s.e.Coef.s.e.
Consumption-0.4519(1.5239)0.1529(3.5820)
Consumption sq.0.08838(0.3872)0.2725**(0.0987)
Consumption x Leisure0.4187(0.3614)0.3794(0.9028)
Leisure103.88***(12.4890)111.48***(10.3108)
Leisure sq.-13.111***(1.3576)-13.358***(1.1540)
Leisure x
 East Germany-1.6070**(0.6184)-1.3669**(0.4225)
 German nationality2.0888*(0.9744)0.04071(0.6061)
 High education0.1565(0.8211)-1.1287*(0.5198)
 Low education2.2245***(0.6427)1.4929**(0.4592)
 Age-2.3404(3.2685)-3.6618(2.1359)
 Age sq.25.516(41.0984)43.342(25.2813)
 Children 0-34.9634***(1.1028)3.8055***(0.7702)
 Children 4-62.8139***(0.6554)1.4972**(0.4876)
 Children 7-160.6357(0.3874)0.6774*(0.3138)
 Children >161.3024*(0.5400)0.6987(0.5192)
Fixed costs of work2.8658***(0.3697)2.6273***(0.2451)
Fixed costs of full-time-1.2038***(0.2668)-0.9790***(0.1860)
N 299 634
Log-likelihood -445.12 -999.52
UC§lt;00.0043000.0004507
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A12
Estimation results for the labor supply preferences of couples where only one spouse is flexible
 2004 2015
 Coef. s.e. Coef. s.e.
Consumption0.6217(1.4490)7.9105***(1.6243)
Consumption sq.0.4029***(0.0702)0.4141***(0.0694)
Consumption x Leisure0.3898(0.3162)-1.0822**(0.3507)
Leisure84.463***(5.9911)84.997***(5.6047)
Leisure sq.-10.587***(0.7109)-10.476***(0.6454)
Leisure x
 Woman5.9726***(0.5172)4.7809***(0.4087)
 Leisure of spouse0.4631*(0.2316)0.4475(0.2367)
 East Germany1.1401(0.6794)0.3378(0.5699)
 East Germany - Woman-2.9637***(0.7627)-1.4917*(0.6606)
 German nationality-1.1034*(0.5468)-0.7173(0.4119)
 High education - Woman-1.1636**(0.3744)-0.6819*(0.3201)
 High education - Man-0.05177(0.3317)0.06458(0.3113)
 Low education - Woman1.0177*(0.4058)0.5498(0.3899)
 Low education - Man-0.3108(0.4779)0.2260(0.4211)
 Age-4.4804***(1.2896)-3.6811***(1.0843)
 Age sq.63.590***(14.8757)52.129***(11.9375)
 Children 0-34.0337***(0.5750)2.7117***(0.4410)
 Children 4-61.5221***(0.4286)0.9293**(0.3156)
 Children 7-160.8736***(0.2014)0.6289***(0.1799)
 Children >160.5671**(0.2194)0.3523(0.2805)
Fixed costs of work2.6902***(0.2091)2.7418***(0.1963)
Fixed costs of full-time-1.7784***(0.1535)-1.4269***(0.1386)
N 1050 1151
Log-likelihood -1431.3 -1624.8
UC§lt;00.0016330.001862
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A13
Estimation results for the labor supply preferences of couples where both spouses are flexible
20042015
Coef.s.e.Coef.s.e.
Consumption1.4838**(0.5294)12.561***(2.0692)
Consumption sq.0.1944***(0.0385)0.3553***(0.0516)
Consumption x Leisure man0.009652(0.0925)-1.0063**(0.3598)
Consumption x Leisure woman-0.02770(0.0853)-1.2710***(0.2936)
Leisure man94.432***(7.2397)93.569***(5.7676)
Leisure man sq.-10.843***(0.9208)-10.851***(0.6849)
Leisure man x
 East Germany-4.6848(3.1804)-2.8742(2.9422)
 German nationality - Man-0.9338*(0.4397)-0.6835*(0.3021)
 High education - Man-1.2707***(0.2680)0.1922(0.2509)
 Low education - Man0.7592*(0.2948)0.4963(0.2573)
 Age - Man-3.7896***(0.9974)-2.4464**(0.8087)
 Age sq. - Man53.132***(11.3029)32.686***(9.0016)
Leisure woman101.64***(4.4523)91.721***(4.3630)
Leisure woman sq.-12.132***(0.4732)-10.546***(0.4320)
Leisure woman x
 East Germany-7.4150*(3.0151)-5.0222(2.7395)
 German nationality - Woman-0.3894(0.3941)-0.8842***(0.2679)
 High education - Woman-1.2869***(0.2164)-0.7146***(0.1953)
 Low education - Woman0.1559(0.2384)0.6132**(0.2345)
 Age - Woman-2.1765*(0.8896)-2.0661**(0.7590)
 Age sq. - Woman42.169***(10.6571)32.285***(8.7851)
 Children 0-36.9415***(0.3614)5.0673***(0.2656)
 Children 4-63.1790***(0.2612)1.5697***(0.1733)
 Children 7-161.7139***(0.1183)1.3189***(0.0999)
 Children >160.7215***(0.1306)0.7273***(0.1676)
Leisure man x Leisure woman-1.0564*(0.4114)-1.0340*(0.4519)
Leisure man x Leisure woman x
 East Germany1.2956(0.8144)0.8652(0.7362)
 German couple-0.05897(0.1072)0.1427*(0.0693)
Fixed costs of work - Man4.5919***(0.4411)4.0863***(0.3150)
Fixed costs of work - Woman2.1989***(0.1077)2.2333***(0.0979)
Fixed costs of full-time - Man-3.7534***(0.2227)-3.0504***(0.1560)
Fixed costs of full-time - Woman-1.5968***(0.0953)-0.8672***(0.0869)
N 2879 3154
Log-likelihood -6504.1 -7677.6
UC§lt;00.013530.002498
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Source: IAB-MSM; author’s own presentation.

Table A14
Regression results: Effect heterogeneity
PolicyI. pol.WageI. wagePref.Restr.Other
2015 policy-0.235***
(-9.84)
-0.150***
(-17.56)
0.032**
(2.88)
0.102***
(3.85)
-0.072***
(-15.84)
-0.381***
(-24.05)
LS 2015 policy-0.235***
(-8.96)
0.003
(0.40)
-0.052***
(-4.65)
-0.216***
(-8.09)
-0.005
(-1.11)
0.009
(0.55)
2015 wages-0.150***
(-5.71)
0.003
(0.14)
0.016
(1.41)
-0.077**
(-2.90)
0.057***
(12.49)
-0.217***
(-13.72)
LS 2015 wages0.032
(1.23)
-0.052*
(-2.19)
0.016
(1.85)
0.093***
(3.50)
0.023***
(5.05)
-0.022
(-1.41)
2015 preferences0.102***
(3.90)
-0.216***
(-9.03)
-0.077***
(-9.07)
0.093***
(8.32)
0.014**
(3.03)
-0.144***
(-9.07)
2015 restrictions-0.072**
(-2.76)
-0.005
(-0.21)
0.057***
(6.69)
0.023*
(2.05)
0.014
(0.52)
0.009
(0.58)
2015 population-0.381***
(-14.51)
0.009
(0.37)
-0.217***
(-25.48)
-0.022
(-1.99)
-0.144***
(-5.39)
0.009*
(2.02)
Constant-0.206***
(-5.93)
0.121***
(3.84)
0.197***
(17.49)
0.059***
(3.99)
0.312***
(8.84)
-0.496***
(-82.06)
2.031***
(96.91)
N64646464646464
r20.8590.7630.9500.6570.6960.8870.937
  1. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

  2. Note: t statistics in parentheses.

  3. Source: IAB-MSM; author’s own presentation.

Data and code availability

Please contact the authors for information on data and code availability.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)